Transcript Document
2.0 Bending of Beams ☻2.1 ☻2.2 Revision – Bending Moments Stresses in Beams sx sx P x ☻2.3 Mxz Mxz Combined Bending and Axial Loading P1 P2 2.4 Deflections in Beams 2.5 Buckling (Refer: B,C & A –Sec’s 7.1-7.4) (Refer: B,C & A –Sec’s 10.1, 10.2) MECHENG242 Mechanics of Materials Bending of Beams 2.4 Beam Deflection (Refer: B, C & A–Sec 7.1, 7.2, 7.3, 7.4) Recall: THE ENGINEERING BEAM THEORY sx y' Mxz E Iz R 2.4.1 Moment-Curvature Equation v (Deflection) y x A B NA x A’ s B’ If deformation is small (i.e. slope is “flat”): s x MECHENG242 Mechanics of Materials Bending of Beams I d R dx R. S x R B’ S A’ v v and x (slope is “flat”) I d2 v R dx2 Alternatively: from Newton’s Curvature Equation v R v f (x) x MECHENG242 Mechanics of Materials I R 2 d2 v 2 dx dv 1 dx 2 3 2 dv 1 if dx I d2 v R dx2 Bending of Beams From the Engineering Beam Theory: Mxz E Iz R 1 Mxz d2 v R EI z dx2 d2 v EI z 2 Mxz dx Flexural Stiffness Curvature Mxz Bending Moment Recall, for Bars under axial loading: K u Load Flexural Stiffness MECHENG242 Mechanics of Materials 1 d2 v R dx2 Axial Stiffness Extension Bending of Beams d2 v 1 M xz Since, 2 dx EIz Curvature dv 1 Mxz dx C1 dx EI z 1 Mxz dx dx v EI z Slope C 1 dx C2 Deflection Where C1 and C2 are found using the boundary conditions. Curvature R MECHENG242 Mechanics of Materials Slope dv dx Deflection v Bending of Beams v = Deflection Example: y P.L P L A B v x vMax P Deflected Shape x P.L Mxz P Qxy d2 v EI z 2 Mxz Px PL dx dv x2 EIz P PLx C1 dx 2 x 3 PLx2 C1x C2 EI z v P 6 2 MECHENG242 Mechanics of Materials Mxz Px PL Bending of Beams P x 3 PLx2 EI z v P C1x C2 6 2 To find C1 and C2: Boundary conditions: (i) @ x=0 (ii) @ x=0 dv 0 dx v0 C1 0 & C2 0 Equation of the deflected shape is: x 3 PLx2 EI z v P 6 2 vMax occurs at x=L vMax MECHENG242 Mechanics of Materials 1 PL3 3 EI z Bending of Beams 2.4.2 Macaulay’s Notation P a b Example: y L x Pb L Pa L x P Pb L Mxz Qxy Mxz Pb d2 v EI z 2 Mxz Pb x P x a L dx dv Pb x 2 P 2 EI z x a C1 L 2 2 dx EI z v Pb 6L x3 P 6 x a3 MECHENG242 Mechanics of Materials x P x a L C1x C2 Bending of Beams EI z v Pb 6L x3 P 6 x a3 Boundary conditions: From (i): C2 0 From (ii): 0 Pb C1x C2 (i) @ x=0 v0 (ii) @ x=L v0 L P L a 6L 6 3 3 C1 Pb b 6L 2 L2 C1 L Since (L-a)=b Equation of the deflected shape is: 1 Pb 3 3 P v x x a Pb b2 L2 x 6L 6 6L EI z MECHENG242 Mechanics of Materials Bending of Beams To find vMax: vMax occurs where dv 0 (i.e. slope=0) dx 2 P x 2 2 2 Pb Pb i.e. EI z 0 x a b L L 2 2 6L Assuming vMax will be at x<a, dv 0 dx when x a2 i.e. 0 x 2 1 b2 L2 1 L2 b 2 3 3 This value of x is then substituted into the above equation of the deflected shape in order to obtain vMax. Note: L if a b 2 vMax PL3 48EI z MECHENG242 Mechanics of Materials L 2 P L 2 vMax Bending of Beams 2.4.3 Summary After considering stress caused by bending, we have now looked at the deflections generated. Keep in mind the relationships between Curvature, Slope, and Deflection, and understand what they are: d2 v 1 I Mxz 2 dx EI z R • Curvature • Slope dv dx • Deflection v Apart from my examples and problems: • B, C & A Worked Examples, pg 185-201 Problems, 7.1 to 7.15, pg 207 MECHENG242 Mechanics of Materials Bending of Beams