Transcript Document
2.0 Bending of Beams ☻2.1 Revision – Bending Moments 2.2 Stresses in Beams (Refer: B,C & A –Sec’s 6.3-6.6) sx sx P x Mxz 2.3 Combined Bending and Axial Loading P1 Mxz (Refer: B,C & A – Sec’s 6.11, 6.12) P2 2.4 Deflections in Beams 2.5 Buckling (Refer: B,C & A –Sec’s 7.1-7.4) (Refer: B,C & A –Sec’s 10.1, 10.2) MECHENG242 Mechanics of Materials Bending of Beams 2.2 Stresses in Beams 2.2.1 The Engineering Beam Theory Compression Mxz C y (Refer: B, C & A–Sec 6.3, 6.4, 6.5, 6.6) Mxz D y’ x NA Neutral Axis y’ z No Stress A y B dx Tension dq R Mxz C’ A’ MECHENG242 Mechanics of Materials Mxz D’ y’ B’ sx=0 on the Neutral Axis. In general we must find the position of the Neutral Axis. Bending of Beams Mxz C Mxz D y’ A B dq R Mxz Mxz C’ A’ D’ y’ B’ Assumptions AB A' B' dx R dq Plane surfaces remain plane Beam material is elastic sy sz 0 MECHENG242 Mechanics of Materials and only sx 0 Bending of Beams Geometry of Deformation: C' D'CD L x CD L0 CD AB A' B' dx R dq C' D' R y' dq R y' dq x Rdq Hookes Law: Rdq y' R 1 x s x s y s z E sy sz 0 x MECHENG242 Mechanics of Materials sx E and E s x y' R 1 Bending of Beams E s x y' R 1 dx y Linear Distribution of sx x (Eqn 1 ) y’ NA 0 Neutral Axis -ve +ve sx Note: E is a Material Property 1 R y x is Curvature MECHENG242 Mechanics of Materials Mxz dx Mxz Bending of Beams Equilibrium: s x dA dFxx Let y F But dA Mxz sx x If Area, A A s A x 0 dA 0 E y'dA 0 R A y’ z x A y'dA First Moment of Area y'dA 0, Then y’ is measured from the centroidal axis of the beam cross-section. y “Neutral Axis” coincides with the XZ plane through the centroid. y’ NA x z y’ Centroid Neutral Axis MECHENG242 Mechanics of Materials Bending of Beams y Equilibrium: M z dA dFxx y'dMxz 0 0 y’ s x y'dA dMxz Mxz A Let IZ A y'2 dA x A E y'2 dA Mxz R A as sx Mxz z Area, A E s x y' R 1 =The 2nd Moment of Area about Z-axis E Iz Mxz R Mxz E Iz R 2 THE SIMPLE BEAM THEORY: 1 & 2 MECHENG242 Mechanics of Materials Mxz s E x Iz y' R Bending of Beams Mxz sx E Iz y' R Mxz - Applied Bending Moment - N.m Iz - Property of Cross-Sectional Area - m4 sx - Stress due to Mxz - N/m2 or Pa y' E R - Distance from the Neutral Axis -m - Young’s Modulus of Beam Material - N/m2 or Pa - Radius of Curvature due to Mxz -m y Mxz sx y' Iz y’ NA x z y’ o Neutral Axis MECHENG242 Mechanics of Materials Bending of Beams 2.2.2 Properties of Area (Refer: B, C & A–Appendix A, p598-601) y Mxz sx E Iz y' R dA sx y’ o z y’ is measured from the Centroidal or Neutral Axis, z. x Iz is the 2nd Moment of Area about the Centroidal or Neutral Axis, z. Mxz Position of Centroidal or Neutral Axis: dA z y Centroidal Axis y’ o y dA z y’ o Area, A y A y y'dA A n i.e. A y'dA 0, (Definition) MECHENG242 Mechanics of Materials y 1 y'dA A A Bending of Beams Example: (Dimensions in mm) y 200 10 z 120 y 89.6 m m 60 125 o Centroidal Axis 1 y y'dA A A n 20 1 200 10125 120 2060 y 200 10 120 20 1 394,000 250,000 144,000 89.55 m m y 4,400 4,400 89.6 103 m MECHENG242 Mechanics of Materials Bending of Beams 2nd Moment of Area: y dA z’ Also, I o Example: IZ y'2 dA A y’ z Definition: z dy 2 y’ o d 2 d 3 2 bd y Iz y'2 b dy b 12 3 d d 2 2 2 3 db 3 Also , Iy 12 2 b A y d d y z 2 dA b 2 MECHENG242 Mechanics of Materials Bending of Beams The Parallel Axis Theorem: y Definition: In Iz Ay 2 z o y n Example: b d z 2 2 y b 2 dy y’ o d n 2 d 3 y bd In y'2 b dy b 3 3 0 0 d y MECHENG242 Mechanics of Materials 3 bd d bd Iz In Ay 3 2 2 3 2 bd3 Iz 12 Bending of Beams y Example: (Dimensions in mm) 200 • What is Iz? • What is maximum sx? 10 z 120 30.4 o In Iz Ay 89.6 2 200 20 2 10 3 20 30.4 35.4 bd3 2089.6 89.6 1 Iz ,1 4.79 106 mm4 3 3 3 bd3 2030.4 I z ,2 0.19 106 mm4 20 3 3 3 3 2 bd 200 10 2 6 4 Ay 3 . 28 10 mm 200 10 35.4 12 12 3 I z ,3 MECHENG242 Mechanics of Materials Bending of Beams y Example: (Dimensions in mm) 200 • What is Iz? • What is maximum sx? 10 z 120 30.4 o In Iz Ay 89.6 2 200 20 2 1 10 3 20 30.4 35.4 89.6 Iz Iz,1 Iz,2 Iz,3 20 Iz 8.26 106 m m4 8.26 106 m4 MECHENG242 Mechanics of Materials Bending of Beams Maximum Stress: y 40.4 Mxz x NA 89.6 sx s x ,Max s x ,Max Mxz y' Iz Mxz yMax Iz Mxz 3 89 . 6 10 8.26 106 MECHENG242 Mechanics of Materials (N/m2 or Pa) Bending of Beams The Perpendicular Axis Theorem: y 2 2 2 R y ' z ' dA z’ 2 2 2 R dA y ' dA z ' dA R z y’ A A A o Jx Iz Iy The Polar 2nd Moment of Area (About the X-axis) d Example: y dR z 2 Jx R2 dA R 2 2R dR A 0 From Symmetry, R o d 4 32 Iz Iy Jx Iz Iy 2Iy J x d 4 Iy 2 64 MECHENG242 Mechanics of Materials Bending of Beams 2.2.3 Summary The Engineering Beam Theory determines the axial stress distribution generated across the section of a beam. It is applicable to long, slender load carrying devices. Mxz s E x Iz y' R Calculating properties of beam cross sections is a necessary part of the analysis. • Neutral Axis Position, y • 2nd Moments of Area, Iy, Iz, Jx Properties of Areas are discussed in Appendix A of B, C & A. MECHENG242 Mechanics of Materials Bending of Beams