Transcript Document
2.0 Bending of Beams
☻2.1
Revision – Bending Moments
2.2 Stresses in Beams
(Refer: B,C & A –Sec’s 6.3-6.6)
sx
sx
P
x
Mxz
2.3 Combined Bending and Axial Loading
P1
Mxz
(Refer: B,C & A –
Sec’s 6.11, 6.12)
P2
2.4 Deflections in Beams
2.5 Buckling
(Refer: B,C & A –Sec’s 7.1-7.4)
(Refer: B,C & A –Sec’s 10.1, 10.2)
MECHENG242 Mechanics of Materials
Bending of Beams
2.2 Stresses in Beams
2.2.1 The Engineering Beam Theory
Compression
Mxz
C
y
(Refer: B, C & A–Sec 6.3,
6.4, 6.5, 6.6)
Mxz
D
y’
x
NA
Neutral Axis
y’
z
No Stress
A
y
B
dx
Tension
dq
R
Mxz
C’
A’
MECHENG242 Mechanics of Materials
Mxz
D’ y’
B’
sx=0 on the
Neutral Axis.
In general we
must find the
position of the
Neutral Axis.
Bending of Beams
Mxz
C
Mxz
D
y’
A
B
dq
R
Mxz
Mxz
C’
A’
D’
y’
B’
Assumptions
AB A' B' dx R dq
Plane surfaces remain plane
Beam material is elastic
sy sz 0
MECHENG242 Mechanics of Materials
and only
sx 0
Bending of Beams
Geometry of Deformation:
C' D'CD
L
x
CD
L0
CD AB A' B' dx R dq
C' D' R y' dq
R y' dq
x
Rdq
Hookes Law:
Rdq
y'
R
1
x s x s y s z
E
sy sz 0
x
MECHENG242 Mechanics of Materials
sx
E
and
E
s x y'
R
1
Bending of Beams
E
s x y'
R
1
dx
y
Linear Distribution of sx
x
(Eqn 1 )
y’
NA
0
Neutral Axis
-ve
+ve
sx
Note:
E is a Material Property
1
R
y
x
is Curvature
MECHENG242 Mechanics of Materials
Mxz
dx
Mxz
Bending of Beams
Equilibrium:
s x dA dFxx
Let
y
F
But
dA
Mxz
sx
x
If
Area, A
A
s
A
x
0
dA 0
E
y'dA 0
R A
y’
z
x
A
y'dA First Moment of Area
y'dA 0, Then y’ is measured from the centroidal axis
of the beam cross-section.
y
“Neutral Axis”
coincides with the
XZ plane through
the centroid.
y’
NA
x
z
y’
Centroid
Neutral Axis
MECHENG242 Mechanics of Materials
Bending of Beams
y
Equilibrium:
M
z
dA
dFxx y'dMxz 0
0
y’
s x y'dA dMxz Mxz
A
Let IZ
A
y'2 dA
x
A
E
y'2 dA Mxz
R A
as
sx
Mxz
z
Area, A
E
s x y'
R
1
=The 2nd Moment of Area about Z-axis
E
Iz Mxz
R
Mxz E
Iz
R
2
THE SIMPLE BEAM THEORY:
1 & 2
MECHENG242 Mechanics of Materials
Mxz
s
E
x
Iz
y' R
Bending of Beams
Mxz
sx E
Iz
y' R
Mxz - Applied Bending Moment
- N.m
Iz
- Property of Cross-Sectional Area
- m4
sx
- Stress due to Mxz
- N/m2 or Pa
y'
E
R
- Distance from the Neutral Axis
-m
- Young’s Modulus of Beam Material - N/m2 or Pa
- Radius of Curvature due to Mxz
-m
y
Mxz
sx
y'
Iz
y’
NA
x
z
y’
o
Neutral Axis
MECHENG242 Mechanics of Materials
Bending of Beams
2.2.2 Properties of Area (Refer: B, C & A–Appendix A, p598-601)
y
Mxz
sx E
Iz
y' R
dA
sx
y’
o
z
y’ is measured from the
Centroidal or Neutral Axis, z.
x
Iz is the 2nd Moment of Area about
the Centroidal or Neutral Axis, z.
Mxz
Position of Centroidal or Neutral Axis:
dA
z
y
Centroidal
Axis
y’
o
y
dA
z
y’
o
Area, A
y
A y y'dA
A
n
i.e.
A
y'dA 0, (Definition)
MECHENG242 Mechanics of Materials
y
1
y'dA
A A
Bending of Beams
Example:
(Dimensions in mm)
y
200
10
z
120
y 89.6 m m
60
125
o
Centroidal
Axis
1
y y'dA
A A
n
20
1
200 10125 120 2060
y
200 10 120 20
1
394,000
250,000 144,000
89.55 m m
y
4,400
4,400
89.6 103 m
MECHENG242 Mechanics of Materials
Bending of Beams
2nd Moment of Area:
y
dA
z’
Also, I
o
Example:
IZ y'2 dA
A
y’
z
Definition:
z
dy
2
y’
o
d
2
d
3
2
bd
y
Iz y'2 b dy b
12
3 d
d
2
2
2
3
db 3
Also , Iy
12
2
b
A
y
d
d
y
z 2 dA
b
2
MECHENG242 Mechanics of Materials
Bending of Beams
The Parallel Axis Theorem:
y
Definition:
In Iz Ay
2
z
o
y
n
Example:
b
d
z
2
2
y
b
2
dy
y’
o
d
n
2
d
3
y
bd
In y'2 b dy b
3
3 0
0
d
y
MECHENG242 Mechanics of Materials
3
bd
d
bd
Iz In Ay
3
2
2
3
2
bd3
Iz
12
Bending of Beams
y
Example:
(Dimensions in mm)
200
• What is Iz?
• What is maximum sx?
10
z
120
30.4
o
In Iz Ay
89.6
2
200
20
2
10
3
20
30.4
35.4
bd3 2089.6
89.6
1
Iz ,1
4.79 106 mm4
3
3
3
bd3 2030.4
I z ,2
0.19 106 mm4
20
3
3
3
3
2
bd
200
10
2
6
4
Ay
3
.
28
10
mm
200 10 35.4
12
12
3
I z ,3
MECHENG242 Mechanics of Materials
Bending of Beams
y
Example:
(Dimensions in mm)
200
• What is Iz?
• What is maximum sx?
10
z
120
30.4
o
In Iz Ay
89.6
2
200
20
2
1
10
3
20
30.4
35.4
89.6
Iz Iz,1 Iz,2 Iz,3
20
Iz 8.26 106 m m4 8.26 106 m4
MECHENG242 Mechanics of Materials
Bending of Beams
Maximum Stress:
y
40.4
Mxz
x
NA
89.6
sx
s x ,Max
s x ,Max
Mxz
y'
Iz
Mxz
yMax
Iz
Mxz
3
89
.
6
10
8.26 106
MECHENG242 Mechanics of Materials
(N/m2 or Pa)
Bending of Beams
The Perpendicular Axis Theorem:
y
2
2
2
R
y
'
z
'
dA
z’
2
2
2
R
dA
y
'
dA
z
'
dA
R
z y’
A
A
A
o
Jx Iz Iy
The Polar 2nd Moment of Area (About the X-axis)
d
Example:
y
dR
z
2
Jx R2 dA R 2 2R dR
A
0
From Symmetry,
R
o
d 4
32
Iz Iy
Jx Iz Iy 2Iy
J x d 4
Iy
2
64
MECHENG242 Mechanics of Materials
Bending of Beams
2.2.3 Summary
The Engineering Beam Theory determines the axial stress distribution
generated across the section of a beam. It is applicable to long, slender
load carrying devices.
Mxz
s
E
x
Iz
y' R
Calculating properties of beam cross sections is a necessary part of
the analysis.
• Neutral Axis Position, y
• 2nd Moments of Area, Iy, Iz, Jx
Properties of Areas are discussed in Appendix A of B, C & A.
MECHENG242 Mechanics of Materials
Bending of Beams