Transcript Document

☻ 1.0 Axial Forces
2.0 Bending of Beams
Now we consider the elastic deformation of beams (bars) under
bending loads.
M
M
www.engineering.auckland.ac.nz/mechanical/MechEng242
MECHENG242 Mechanics of Materials
Bending of Beams
Application to a Bar
Normal Force:
Fn
Fn
Bending Moment:
S.B.
Mt
Mt
Shear Force:
Ft
Ft
Torque or Twisting Moment:
K.J.
Mn
Mn
MECHENG242 Mechanics of Materials
Bending of Beams
Examples of Devices under Bending Loading:
Atrium
Structure
Excavator
Yacht
Car Chassis
MECHENG242 Mechanics of Materials
Bending of Beams
2.0 Bending of Beams
2.1 Revision – Bending Moments (Refer: B,C & A – Sec’s 6.1,6.2)
2.2 Stresses in Beams
(Refer: B,C & A –Sec’s 6.3-6.6)
sx
sx
P
x
Mxz
2.3 Combined Bending and Axial Loading
P1
Mxz
(Refer: B,C & A –
Sec’s 6.11, 6.12)
P2
2.4 Deflections in Beams
2.5 Buckling
(Refer: B,C & A –Sec’s 7.1-7.4)
(Refer: B,C & A –Sec’s 10.1, 10.2)
MECHENG242 Mechanics of Materials
Bending of Beams
2.1 Revision – Bending Moments
RECALL…
(Refer: B, C & A – Chapter 6)
Last year Jason Ingham introduced Shear Force and Bending
Moment Diagrams.
12 kN
3m
3m
Q
(SFD)
0
(BMD)
M
0
MECHENG242 Mechanics of Materials
Bending of Beams
Consider the simply supported beam below:
(Refer: B, C&A – Sections 1.14, 1.15, 1.16, 6.1)
y
Radius of Curvature, R
P
x
B
A
Mxz
RAy
Mxz
Deflected
Shape
Mxz
MECHENG242 Mechanics of Materials
Mxz
RBy
What stresses are generated
within, due to bending?
Bending of Beams
P
A
W
B
u
RAy
Recall: Axial Deformation
Load
(W)
Mxz
Mxz
RBy
Bending
Bending
Moment
(Mxz)
Axial Stiffness
Extension (u)
MECHENG242 Mechanics of Materials
Flexural Stiffness
Curvature (1/R)
Bending of Beams
Axial Stress Due to Bending:
y
x
Mxz=Bending Moment
Mxz sx (Compression) Mxz
sx=0
Beam
sx (Tension)
Unlike stress generated by axial loads, due to bending:
sx is NOT UNIFORM through
the section depth
sx DEPENDS ON:
(i) Bending Moment, Mxz
(ii) Geometry of Cross-section
MECHENG242 Mechanics of Materials
Bending of Beams
Sign Conventions:
Qxy=Shear Force
y
Mxz=Bending Moment
Mxz
Mxz
Qxy
Qxy
x
-ve sx
+ve sx
+VE (POSITIVE)
“Happy” Beam is +VE
MECHENG242 Mechanics of Materials
“Sad” Beam is -VE
Bending of Beams
Example 1: Bending Moment Diagrams
Mxz=P.L
P
A
y
x
B
L
RAy=P
P.L
Mxz
P
Mxz
Qxy
Mxz
Qxy
Q & M are POSITIVE
MECHENG242 Mechanics of Materials
Qxy
x
P
Mxz
Qxy
F  0 ;
M  0 ;
y
z
 Qxy  P
 Mxz  PL  x 
Bending of Beams
Q xy  P; Mxz  PL  x 
P
L
y
P.L
Mxz B
A
x
Qxy
x
P
P
+ve
Qxy
Mxz
Shear Force
Diagram
0
(SFD)
0
Bending
Moment
Diagram
-P.L
-ve
(BMD)
To find sx and deflections, need to know Mxz.
MECHENG242 Mechanics of Materials
Bending of Beams
Example 2: Macaulay’s Notation
a
A
R Ay 
z
b
x
B
R By 
x
Pa
a  b 
P
a
M
y
C
P b
a  b 
P b
a  b
P
Mxz
A
Qxy
0 ;
 Mxz  P x  a
 Mxz
Where
Pb
x   P x  a 

a  b
x  a
MECHENG242 Mechanics of Materials
Pb
x   0

a  b
can only be +VE or ZERO.
Bending of Beams
P
a
A
C
Pb
a  b
b
x
B
Pa
a  b
x
(i) When x  a :
Mxz 
x  a:
(ii) When
BMD:
y
Mxz
Pab
a  b
Mxz
Pb
x   P x  a 
a  b
0
1
Pb
x   P x  a 

a  b
2
Eq. 1
Eq. 2
+ve
0 A
MECHENG242 Mechanics of Materials
C
B
Bending of Beams
Distributed Load w
per unit length
Example 3: Distributed Load
y
x
wL2
Mxz=
2
A
B
L
x
RAy=wL
wL2
2
Mxz
wx
Qxy
wL
Mxz
Qxy
F  0 ;
M  0 ;
y
wL  wx Qxy  0
 Qxy  wL  x
w L2
x
 w Lx   w x   0
Mxz 
z
2
2
MECHENG242 Mechanics of Materials
Bending of Beams
 Qxy  wL  x
 Mxz
w x2 w L2
 w Lx

2
2
Mxz
BMD:
L
0
-ve
x
-wL2
2
MECHENG242 Mechanics of Materials
w L2

2
@ x  0;
Mxz
@ x  L;
Mxz  0
L
@x  ;
2
Mxz
w L2

8
Bending of Beams
Summary – Is anything Necessary for Revision
Generating Bending Moment Diagrams is a key skill you must revise.
From these we will determine:
• Stress Distributions within beams,
• and the resulting Deflections
Apart from the revision problems on Sheet 4, you might try these
sources:
• B, C & A
Worked Examples, pg 126-132
Problems, 6.1 to 6.8, pg 173
• Jason Ingham’s problem sheets:
www.engineering.auckland.ac.nz/mechanical/EngGen121
MECHENG242 Mechanics of Materials
Bending of Beams