Transcript Document
2.0 Bending of Beams ☻2.1 ☻2.2 Revision – Bending Moments Stresses in Beams sx sx P x Mxz 2.3 Combined Bending and Axial Loading P1 Mxz (Refer: B,C & A – Sec’s 6.11, 6.12) P2 2.4 Deflections in Beams 2.5 Buckling (Refer: B,C & A –Sec’s 7.1-7.4) (Refer: B,C & A –Sec’s 10.1, 10.2) MECHENG242 Mechanics of Materials Bending of Beams 2.3 Combined Bending and Axial Loading (Refer: B, C & A–Sec 6.11, 6.12) 2.3.1 Superposition How does axial stress distribution look? P1 L P1.L Mxz P2 y x x P1 z P2 x P2 A Fxx Qxy Fxx=P2 Fxx y +ve 0 Normal Force Diagram P1 y i) Axial Loading s x ,Axial MECHENG242 Mechanics of Materials x Fxx P2 A A x s x,Axial Bending of Beams ii) Bending P1 L y x Mxz P2 P1.L P2 Fxx x z P1 Bending Mxz 0 Moment Diagram P1 y x P2 A x -ve -P1.L s x ,Bending Mxz Px L y' y' Iz Iz y NA x s x,Bending MECHENG242 Mechanics of Materials Bending of Beams Using SUPERPOSITION: s x,Total s x,Axial s x,Bending sx Note: P2 P1 x L y' A Iz s x s x,Max s x ,Max z x at x=0 and y’=+yMax P2 P1L yMax A Iz y P1 y A (at the fixed end) P2 s x,Max y + NA x = NA P sx 2 A P1x L sx y' Iz MECHENG242 Mechanics of Materials P2 P1x L sx y' A Iz Bending of Beams 2.3.2 Eccentric Axial Loading y y y d P C L x z o e z o P P x b P sx d P y P Mxz y' A Iz MECHENG242 Mechanics of Materials 2 b 2 2 2 Mxz=Pe P x C L sx Pe y' P bd bd3 12 Bending of Beams P Pe sx y' 3 bd bd 12 y y x C L y NA C L MECHENG242 Mechanics of Materials x C L x Bending of Beams