Applications of De Moivre`s theorem
Download
Report
Transcript Applications of De Moivre`s theorem
Chapter 40
4/13/2015
By Chtan FYHS-Kulai
1
In mathematics, de
Moivre‘s formula, named
after Abraham de
Moivre.
4/13/2015
By Chtan FYHS-Kulai
2
The formula is important
because it connects complex
numbers and trigonometry.
The expression "cos x + i sin x"
is sometimes abbreviated to
"cis x".
4/13/2015
By Chtan FYHS-Kulai
3
By expanding the left hand
side and then comparing the
real and imaginary parts
under the assumption that x is
real, it is possible to derive
useful expressions for cos(nx)
and sin(nx) in terms of cos(x)
and sin(x).
4/13/2015
By Chtan FYHS-Kulai
4
Furthermore, one can use a
generalization of this
formula to find explicit
expressions for the n-th
roots of unity, that is,
complex numbers z such
that zn = 1.
4/13/2015
By Chtan FYHS-Kulai
5
De Moivre’s theorem
For all values of n, the value, or
one of the values in the case
where n is fractional, of
n
cos i sin
is
cos n i sin n
4/13/2015
By Chtan FYHS-Kulai
6
Proofing of
De Moivre’s
Theorem
4/13/2015
By Chtan FYHS-Kulai
7
Now, let us prove this important
theorem in 3 parts.
1. When n is a positive
integer
2. When n is a negative
integer
3. When n is a fraction
4/13/2015
By Chtan FYHS-Kulai
8
Case 1 : if n is a positive integer
n2
cos i sin
cos i sin cos i sin
2
cos 2i sin cos sin
cos 2 i sin 2
2
4/13/2015
2
By Chtan FYHS-Kulai
9
n3
cos i sin
2
cos i sin cos i sin
cos i sin cos 2 i sin 2
3
cos cos 2 i sin cos 2 i cos sin 2 sin sin 2
cos 2 i sin 2
cos3 i sin 3
4/13/2015
By Chtan FYHS-Kulai
10
n4
cos i sin
3
cos i sin cos i sin
cos i sin cos3 i sin 3
4
cos cos3 i sin cos3 i cos sin 3 sin sin 3
cos 3 i sin 3
cos 4 i sin 4
4/13/2015
By Chtan FYHS-Kulai
11
Continuing this process, when n is
a positive integer,
cos i sin
n
4/13/2015
cosn i sin n
By Chtan FYHS-Kulai
12
Case 2 : if n is a negative integer
Let n=-m where m is positive integer
cos i sin
m
cos i sin
n
1
m
cos i sin
1
cos m i sin m
4/13/2015
By Chtan FYHS-Kulai
13
1
cos m i sin m
cosm i sin m cosm i sin m
cos m i sin m
2
2
cos m sin m
cos m i sin m
cos m i sin m
cos n i sin n
4/13/2015
By Chtan FYHS-Kulai
14
Case 3 : if n is a fraction equal
to p/q, p and q are integers
cos i sin
4/13/2015
p
q
p
p
cos i sin
q
q
By Chtan FYHS-Kulai
15
Raising the RHS to power q we have,
q
p
p
cos i sin cos p i sin p
q
q
but,
q is an integer
cos i sin
4/13/2015
p
cos p i sin p
p is an integer
By Chtan FYHS-Kulai
16
q
p
p
p
cos i sin cos i sin
q
q
p
p
p
cos i sin cos i sin q
q
q
Hence, De Moivre’s Theorem applies when
n is a rational fraction.
4/13/2015
By Chtan FYHS-Kulai
17
Proofing by
mathematical
induction
4/13/2015
By Chtan FYHS-Kulai
18
Let S n | rcos i sin r n cosn i sin n
n
1. z z r cos i sin r cos1 i sin 1 .
1
1
T hus 1 S .
2. Assume z r cosk i sin k .
k
k
Now,
4/13/2015
By Chtan FYHS-Kulai
19
z
k 1
z z
k
r cos k i sin k r cos i sin
k
r r cosk i sin k
k
r
k 1
cosk 1 i sin k 1
Thus k S k 1 S .
4/13/2015
By Chtan FYHS-Kulai
20
The hypothesis of Mathematical
Induction has been satisfied ,
and we can conclude that
S N.
Hence,
z r cos i sin r cos n i sin n
n
n
n
n N
4/13/2015
By Chtan FYHS-Kulai
21
e.g. 1
Let z = 1 − i. Find
Soln:
z
10
.
First write z in polar form.
z 1 1
2
2
4/13/2015
By Chtan FYHS-Kulai
22
arg z
Polar form :
4
z 2 cos i sin
4
4
Applying de Moivre’s Theorem gives :
4/13/2015
By Chtan FYHS-Kulai
23
z 2 cos10 i sin 10
4
4
10
10
5
2 cos
i sin
4
4
5
5
32 cos
i sin
2
2
10
10
32 cos i sin
2
2
32i
4/13/2015
It can be verified directly that 1 i 10 32i
By Chtan FYHS-Kulai
24
Properties of
1
z and
z
4/13/2015
By Chtan FYHS-Kulai
25
If
z cos i sin
1
then z 1
z
1
cos i sin
cos i sin
cos i sin
4/13/2015
By Chtan FYHS-Kulai
26
z cos i sin
Hence,
1
cos i sin
z
1
z 2 cos
z
1
z 2i sin
z
4/13/2015
By Chtan FYHS-Kulai
27
Similarly, if
z cosn i sin n
n
1
cos n i sin n
n
z
Hence,
1
z n 2 cos n
z
n
1
z n 2i sin n
z
n
4/13/2015
By Chtan FYHS-Kulai
28
We have,
1
z 2 cos
z
Maximum value of cosθ is 1,
minimum value is -1.
Hence, normally
1
2 z 2
z
4/13/2015
By Chtan FYHS-Kulai
29
What happen, if
the value of
1
z
z
is more than 2 or less
than -2 ?
4/13/2015
By Chtan FYHS-Kulai
30
e.g. 2
Given that z cos i sin
1
Prove that z n 2 cos n
z
n
4/13/2015
By Chtan FYHS-Kulai
31
e.g. 3
If
1
z 1 , find
z
(i)
(ii)
4/13/2015
1
z 3
z
1
4
z 4
z
3
By Chtan FYHS-Kulai
32
Do take note of the
following :
4
1
4
4
4
z
2
cos
2
cos
z
1
z 4 2 cos 4
z
4
4/13/2015
By Chtan FYHS-Kulai
33
e.g. 4
4
4
1
1
Expand z and z
z
z
By puttingz cos i sin , deduce that
1
4
4
cos sin cos 4 3.
4
4/13/2015
By Chtan FYHS-Kulai
34
Applications of
De Moivre’s
theorem
4/13/2015
By Chtan FYHS-Kulai
35
We will consider three
applications of De Moivre’s
Theorem in this chapter.
1. Expansion of cosn , sin n , tann .
2. Values of cos i sin
1
.
q
3. Expressions for cos , sin in
terms of multiple angles.
n
4/13/2015
By Chtan FYHS-Kulai
n
36
Certain trig identities can be
derived using De Moivre’s theorem.
In particular, expression such as
cos n , sin n , tann
can be expressed in terms of :
cos , sin , tan
4/13/2015
By Chtan FYHS-Kulai
37
e.g. 5
Use De Moivre’s Thorem to
find an identity for
cos5 , sin 5
in terms of cos , sin .
4/13/2015
By Chtan FYHS-Kulai
38
e.g. 6
Find all complex cube
roots of 27i.
Soln:
We are looking for complex number z with
3
the property z 27i
Strategy : First we write 27i in polar form :-
27i 0 27i 27 27; arg 27i
2
4/13/2015
By Chtan FYHS-Kulai
2
39
27i 27 cos i sin
2
2
Now suppose z cos i sin
Satisfies z 27i . Then, by De
Moivre’s Theorem,
3
r cos3 i sin 3 27i 27 cos i sin
2
2
3
4/13/2015
By Chtan FYHS-Kulai
40
Thus r 27 r 3
3
cos 3 cos
2
This means :
; sin 3 sin
3
2
2
2k
where k is an integer.
Possibilities are : k=0, k=1, k=2
4/13/2015
By Chtan FYHS-Kulai
41
k 0, 3
,
2
6
3 1 3 3 3
z1 3 cos i sin 3
i
i
6
6 2
2
2
2
5
k 1, 3 2 ,
2
6
5
5
z 2 3 cos i sin
6
6
4/13/2015
3
1
3 3 3
i
i
3
2
2
2
2
By Chtan FYHS-Kulai
42
3
k 2, 3 4 ,
2
2
3
3
z3 3 cos i sin
30 i 3i
2
2
z1
z2
z3
4/13/2015
By Chtan FYHS-Kulai
43
In general : to find the complex
nth roots of a non-zero complex
number z.
1. Write z in polar form :
z r (cos i sin )
4/13/2015
By Chtan FYHS-Kulai
44
2. z will have n different nth roots
(i.e. 3 cube roots, 4 fourth roots, etc.)
3. All these roots will have the same
1 the positive real nth
modulus
rn
roots of r) .
4. They will have different arguments
: 2 2 2 n 1 2
n
4/13/2015
,
n
,
n
,,
By Chtan FYHS-Kulai
n
45
5. The complex nth roots of z are
given (in polar form) by
z1 r cos i sin
n
n
1
n
2
2
z2 r cos
i sin
n
n
4
4
z2 r cos
i sin
n
n
1
n
1
n
…etc
4/13/2015
By Chtan FYHS-Kulai
46
e.g. 7 Find all the complex
fourth roots of -16.
Soln:
Modulus = 16
Argument = ∏
4/13/2015
By Chtan FYHS-Kulai
47
16 16cos i sin
Fourth roots of 16 all have modulus :
1
4
16 2
and possibilities for the arguments
are :
2 2 2 3 2
,
,
,
4
4
4
4
4/13/2015
By Chtan FYHS-Kulai
48
Hence, fourth roots of -16 are :
z1 2 cos i sin 2 2i
4
4
3
3
z2 2 cos i sin 2 2i
4
4
5
5
z3 2 cos i sin 2 2i
4
4
7
7
z4 2 cos i sin
2 2i
4
4
4/13/2015
By Chtan FYHS-Kulai
49
e.g. 8
Given that
1 i
and
z
2
z z m0
50
25
find the value of m.
4/13/2015
By Chtan FYHS-Kulai
50
e.g. 9
Solve z 1 0 , hence prove
that
3 1
5
cos
4/13/2015
5
cos
5
By Chtan FYHS-Kulai
2
51
e.g. 10
Find the cube roots of -1.
show that they can be
2
denoted by 1, , and
prove that
2
1 0
4/13/2015
By Chtan FYHS-Kulai
52
e.g. 11
Solve the following equations,
giving any complex roots in the
form r cos i sin
(i)
x 1 0
6
1
,
cos
i
sin
3
3
(ii) x 4 x 8 0
6
3
3
3
2
cos
i
sin
,
2
cos
i
sin
12
12
4
4
4/13/2015
By Chtan FYHS-Kulai
7
7
i sin
, 2 cos
12
12
53
e.g. 12
Prove that
1
sin 35 sin 21 sin 3 7 sin 5 sin 7
64
7
Hence find 35sin 64sin d
7
4/13/2015
By Chtan FYHS-Kulai
54
e.g. 13
4t 4t
Show that tan 4
2
4
1 6t t
3
where t tan
Use your result to solve the
equation
t 4t 6t 4t 1 0
4
4/13/2015
3
2
By Chtan FYHS-Kulai
55
e.g. 14
Use De Moivre’s Theorem to
find 32cos6 cos6 d
4/13/2015
By Chtan FYHS-Kulai
56
e.g. 15
1 and are t wo of t hefift h root sof unit y,
and has a posit iveacut e argument .
If u and v
4
2
3
provet hat u v uv 1 and u v 5.
1
Deduce t hat cos 72
4
4/13/2015
By Chtan FYHS-Kulai
5 1 .
57
e.g. 16
Solve t heequat ion
x 2 x 4 0.
6
4/13/2015
3
By Chtan FYHS-Kulai
58
e.g. 17
P roveby induct ion t hatif n is a
posit iveint eger:
cos i sin cos n i sin n .
n
n
Evaluat e1 i 1 i when n 20.
n
4/13/2015
By Chtan FYHS-Kulai
59
e.g. 18
Factorize x x 1 .
14
4/13/2015
By Chtan FYHS-Kulai
7
60
e.g. 19
6
2
Express sin cos in
terms of multiple angles
and hence evaluate
2
sin cos d
6
2
0
4/13/2015
By Chtan FYHS-Kulai
61
e.g. 20
Express cos 5
in
terms of cos and
hence evaluate tan 6 in
terms of tan .
4/13/2015
By Chtan FYHS-Kulai
62
The end
4/13/2015
By Chtan FYHS-Kulai
63