ders notları

download report

Transcript ders notları

MIT503 Veri Yapıları ve algoritmalar

Veri ağaçları

Y. Doç. Dr. Yuriy Mishchenko

Veri ağaçları • • • • Ders planı Veri ağaçlarının nedeni – neden veri ağaçları ?

İkili ağaçları ve arama veri ağaçları Veri agaçlarının temel operasyonları: arama, min ve max bulma Dengesiz ve dengeli veri ağaçları

Neden veri ağaçları • Veri ağaçları, sıralanmış veri depolamalarıdır –

Sıralanmış dizi

[1,3,7,8,10,15,16,17,21,22,23,25,...] – Sıralanmış dizide arama –

İkiye bölme algoritması: ortadaki değere önce bakalım, o değere göre arama ya sol ya da sağ tarafta devam eder, v.b.

Neden veri ağaçları • • •

Sıralanmamış dizide arama genellikle, dizinin boyutu n ise, O(n) zaman gerektirir Sıralanmış dizide arama O(log 2 gerektirir (ikiye bölme) n) zaman Bu çok büyük avantaj, n=10 6 kayıtlı veritabanında böyle arama yapmak için 10 6 karşı log 2 10 6 =20 vakit gereksinimi var

Neden veri ağaçları • Büyük veriler için depolama strateji – büyük veriler sıralanmış şekilde kaydedilmesi lazım

Sıralanmamış dizide yeni veriler veritabanının sonuna tek işlemle eklenebilir

Sıralanmış dizide yeni değeri dizinin sıralanmış halini tuturken eklenmesi gerekiyor, yani daha önce uygun bir yer yeri bulunması lazım

Neden veri ağaçları •

Örneğin:

Sıralanmış dizi = “1,3,4,7,8,9,11,22,23,25,27,33”

“10” değeri eklemek için, dizide uygun yeri bulmak zorundayız – burada, “9” ten sonra

Hata bu ikiye bölme algoritması kullanarak log n zamanında yapılabilir

2 5 7 11 12 13 hedef 17 22 23 30 aramasının sırası

Neden veri ağaçları –

Sıralanmış dizinin oluşturulması O(n*log n) zaman gerekir, ama bundan sonra arama O(log n) zamanda yapılabilir, sıralanmamış dizi ise O(n)’den daha az

Bu şekilde, büyük verilerin sıralanmış şekilde oluşturulup tutulması faydalıdır

Neden veri ağaçları • Sıralanmış dizi oluşturmanın daha fazla vakit ihtiyacına rağmen, büyük veri depolama için sıralanmış veriler daha çok avantajlıdır. • Veri agaçları, bu problemi çözen bilgisayar biliminin veri yapıları dır

• Ağaçlar graflardır Ağaçlar • Graf (çizilge), noktalar (düğüm) ve oklar (bağlantı) kullanarak ilişkiler gösteren bir kavramsal araçtır

döngü Bu bir graf: düğüm/node Okları takip eden bir bağlantı zincirine “patika” denir (path) bağlantı/edge patika Aynı düğümda başlayan ve duran patikalara, “döngü” denir (loop)

Graflar ve ağaçlar • • • • Graflar, düğümler ve bağlantılar içeren çizilgelerdir Düğümler baze nesneleri temsil eder ve bağlantılar arasındaki ilişkilere temsil eder Bağlantıların zincirlerine “patika” denir ve aynı noktada başlayan ve biten patikalara “döngü” denir

Ağaçlar döngü içermeyen graflardır

Graflar: döngü

Döngü var

Ağaçlar:

Döngüler yok

Birkaç ağaç örneği: Önceki sayfadaki ağaca eşit – ben sadece düğümleri taşıdım

Birkaç ağaç örneği:

Birkaç ağaç örneği: Başka bir ağaç

Ağaçların terimleri: Ağaç kökü Ana düğüm Çocuk düğüm Ağaç yaprakları Ağaç seviyesi Ağacın yüksekliği

Ağaçların terimleri: Ağaç kökü Ana düğüm Çocuk düğüm Ağaç kökü, ağacın en yüksek düğümüdür Bütün bağlantılar için, bağlantının çıktığı düğüme “ana” düğüm denir Bütün bağlantılar için, bağlantının bittiği düğüme “çocuk” dügüm denir

Ağaçların terimleri: Ana düğüm Çocuk düğüm Ağaç kökü Ağaçlarda, tüm düğümler her zaman tek ana düğüme bağlıdır Bir düğümün bir veya birkaç çocuk olabilir Ağaç kökünün sadece çocuklar olabilir

Ağaçların terimleri: Yüksekliği = 4 Kök Yapraklar Seviye Ağaçta, kökünden başka düğümlere “yapraklar” denir Kökten aynı uzaklıkta olan yapraklara “ağaç seviyesi” denir Maksimum seviyesine “ağacın yüksekliği” denir (o bir sayıdır) Burada yüksekliği 4, çünkü 4 seviyesi var

Ağaçların terimleri: • • • • • • • • • Döngü içermeyen graflara ağaç denir Ağacın en yüksek düğüme “agaç kökü” denir Bağlantıların çıktığı düğümlerine “ana düğüm” denir Bağlantıların bittiği düğümlerine “çocuk düğüm” denir Ağaçta, kökten başka düğümlere “yapraklar” denir Kökten aynı uzaklıkta olan yapraklar için “seviye” denir Maksimum uzaklıkta olan seviyeye “agacın yüksekliği” denir Ağaçlarda, tüm düğümlerde tek ana düğme var Ağaç kökünün sadece çocuklar var

Graflar ve ağaçlar •

Ağaçlar bağlantılı listeler kullanarak uygulanır: düğüm + çocuklara işaretçiler

Graflar ve ağaçlar Ağaç düğümlerin hepsinin maksimum iki çocuğu varsa, o agaçlara “ikili ağaç” denir

Üç çocuk ikili ağaç

Graflar ve ağaçlar • İkili ağaçların programlama/algoritmalarda önemli uygulamalar var, onlara arama ağaçları denir, verilerin sıralanmış depoları olarak kullanılır

Graflar ve ağaçlar • Arama ağacın ana özelliği: – Her düğüm için solda değerlerin tümü daha küçük ve sağda daha büyük tür 9 5 15 3 1 4 7 12 11 14 18

Graflar ve ağaçlar • Arama ağacın ana özelliği: – Her düğüm için solda değerlerin tümü daha küçük ve sağda daha büyük tür 9

daha küçük daha büyük

5 15 3 7 12 18 1 4 11 14

Graflar ve ağaçlar Burada, hepsi 9’dan daha küçük olmalı 11 burada olmaz !

3 1 4 5 7 9 Burada, hepsi 9’dan daha büyük olmalı 15 12 11 14 18

Graflar ve ağaçlar 9 hepsi 5’ten daha küçük 5 Aynı şekilde tüm yapraklar için 3 1 4 hepsi 5’ten daha büyük 7 11 12 15 14 18

Graflar ve ağaçlar •

Arama ağaclarında değerler sıralanmıştır

9 5 15 3 1 4 7 12 11 14 18

Veri ağaçların işlemleri

Arama ağaç veri yapısının işlemleri:

Değer ekle

Değer kaldır

Değer arama

Min değeri bul

Max değeri bul

Değerin babası bul

Değerin çocukları bul

3 5 7 9 1 4 11 12 15 14 18

Veri ağaçların işlemleri •

Min ve max değer işlemleri

Min için her zaman sola, max için sağa gitmek gerekir

9 min max 5 15 3 7 12 18 1 4 11 14

Veri ağaçların işlemleri •

Min ve max işlemleri

min

p:=ağaç.kök p.sol_çocuk varken p:=p.sol_çocuk döngü sonu yaz p.değeri

max

p:=ağaç.kök p.sağ_çocuk varken p:=p.sağ_çocuk döngü sonu yaz p.değeri p.sol_çocuk var?

hair yaz p.değeri başlangıç evet p:=p.sol_çocuk durak

Veri ağaçların işlemleri •

Değer arama işlemi

Kökten başlayınca değerleri karşılaştırın; hedef değerinden büyükse, sağa, küçükse, sola gidin

14 9 5 1 3 4 7 15 14 11 12 14 14 18

Veri ağaçların işlemleri başlangıç •

Arama işlemi

eşit ise

Arama

p:=ağaç.kök döngü başlangıcı p.düğüm=hedef ise döngüden çık p.düğüm>hedef ise p:=p.sol_çocuk p.düğüm

1 Veri ağaçların işlemleri •

Değer ekle işlemi

Kökten aramada gibi ilerleyin

– –

Son düğüme sağda yeni düğümü ekleyin Yeni ağaç, arama ağacının koşulu karşılıyor (kolay)

8 9 5 8 15 3 7 12 18 4 Yeni anahtar 8 11 14

Veri ağaçların işlemleri • • • •

Kısaltma

Min – her zaman sola gidin Max – her zaman sağa gidin Arama – kökte başlayınca düğümleri karşılaştırın; hedef düğümden büyükse, sağa, küçükse, sola gidin Ekleme –aramada gibi kökten ilerleyin; sonunda son düğüme sağda yeni düğüm ekleyin

1 Veri ağaçların işlemleri •

Kaldırma için, üç durum olabilir

Kaldırılan düğümde çocuklar yoksa – düğümü kaldırın

9 5 15 3 4 7 Düğümü hemen kaldırabiliriz 11 12 14

Veri ağaçların işlemleri •

Kaldırmada üç durum var

Kaldırılan düğümde çocuklar yoksa – düğümü silin

9 1 3 4 5 15 7 Düğümü hemen silebiliriz 11 12 14

1 Veri ağaçların işlemleri –

Kaldırılan düğümde tek çocuk varsa – düğümü silebiliriz; çocuğunu ana düğümüne bağlayabiliriz

9 Düğümü kaldırabiliriz; çocuklarını ana düğümüne bağlayabiliriz 5 15 3 7 12 4 11 14

1 Veri ağaçların işlemleri –

Kaldırılan düğümde iki çocuk varsa – kaldırılan düğümün solda bir çocuğunu bulmalıyız ki, o çocuğun tek sol çocuğu var ve kendisi en sağdaki koşededir

9 5 15 Kaldırılan düğüm 3 7 12 4 11 14

1 Veri ağaçların işlemleri

Kaldırılan düğümde iki çocuk varsa – kaldırılan düğümün solda bir çocuğunu bulmalıyız ki, o çocuğun tek sol çocuğu var ve kendisi en sağdaki koşededir

9 5 15 3 4 7 Kaldırılan düğüm En sağdaki köşe 11 12 14

Veri ağaçların işlemleri –

Böyle çocuğu kaldırılan düğümün yerine taşınmalı

1 3 4 9 4 7 Kaldırılan düğüm 15 12 11 14

Veri ağaçların işlemleri –

Yeni ağaç, arama ağacının koşulunu karşılıyor

9 1 3 4 4 7 Kaldırılan düğüm Alternatif olasılığı 15 12 11 14

1 Veri ağaçların işlemleri –

Alternatif olarak, kaldırılan düğümün sağda bir çocuğunu bulmalıyız ki, o çocuğun tek sağ çocuk var ve kendisi en soldaki köşededir

O düğüm, kaldırılan düğümün yerine taşınmalı

9 7 15 3 4 7 Kaldırılan düğüm En soldaki köşe 11 12 14

Veri ağaçların işlemleri •

Önceki işlemlerin, ağacın yüksekliği H ise, en çok O(H) zaman gerekir

1 Veri ağaçların işlemleri •

Önceki işlemlerin, ağacın yüksekliği H ise, en çok O(H) zaman gerekir

4 9 4 5 15 H 3 4 7 12 18 4 11 14

Veri ağaçların işlemleri • • •

Ağacın yüksekliği H ağaçtaki düğümlerin sayısına log n olarak bağlıdır, yani çok verimli Gerçek hayatta H ağacın oluşturulduğu sürecine bağlı Ağaç sıralanmış sayılar kullanarak oluşturulduysa, H düğüm sayısına eşit olabilir !!!

Veri ağaçların işlemleri •

Sıralanmış giriş –1,2,3,5,7,9,...

1 1 1 1 2 2 2 3 3 5 5

Ekleme işlem algoritmasına göre,

7

nesnelerin hepsi sağda eklenmiştir !

Çok kötü!!!

9

Veri ağaçların işlemleri • •

Bu tip ağaçlara “dengesiz” denir H büyükse, bu çok kötü, bütün işlemler çok uzun olur, performansa zarardır

• •

Bu nedenle, arama ağaçları algoritma tarafından sürekli dengelenmeli Arama ağaç dengeli ise, sağ ve sol alt ağaçları yaklaşık olarak eşit olmalı, ve H log n ‘e yakın olmalıdır

Veri ağaçların işlemleri 1 3

Sol

5

Eşit

9

Sağ

15 7 12 18 4 11 14

Sol Eşit değil

5

Sağ

1 15 3 12 18 11 14

Dengeli veri ağaçları • • •

Arama ağacın denge durumunu korunması için ekleme ve kaldırma işlemleri değiştirilmeli Bu işlemleri ağacın dengeli olmasını tutuyorsa, böyle arama ağacına “kendi kendini dengeleyen ağaç” denir (self-balancing tree) Kendi kendini dengeleyen ağaçların türleri: AA ağaçları, AVL ağaçları, Al-siyah ağaçları, “Günah keçisi” ağaçlaro, “Splay” ağaçları, VB

Dengeli veri ağaçları • • •

Ekleme ve kaldırma işlemleri ağacın dengeli olmasını tutuyorsa, böyle ağaçlara “kendi kendini dengeleyen ağaç” denir Kendi kendini dengeleyen ağaçlar, sürekli dengesini kontrol eder ve gerekirse “pivot” işlemi yaparlar Pivot işlemi, sağdaki ve soldaki alt ağaçları değiştirip ağacın dengesini sağlar

Dengeli veri ağaçları • • • •

AVL’daki pivot işlemi üç adımdan oluşur...

Sağda veya solda yapılabilir, ağaçta nerede dengesizlik var yani Daha büyük alt dalında ilk önce bir parça yukarıya taşınır, sonra diğer tarafa çekilir Sonuçta daha dengeli ağaç sağlanır

Dengeli veri ağaçları • • • •

Farklı kendi kendine dengeleyen ağaçlar farklı pivot stratejileri kullanır Buradaki üç adımlı pivot, AVL pivottur Genel pivot işlemin amacı – ağacın dengesini sağlamaktır Dengeli ağaçta, yükseklik her zaman log 2 n civarında kalır ve bu nedenle en optimum veri işletmeye garanti var

Özet

• • •

Arama ağaçları, büyük veriler depolama yapısıdır Arama ağaçları, verilerin sıralanmış depolamasını sağlar Sıralanmış depolama O(log n) karşı O(n) veri erişimi sağlar

Özet

• • • •

Ağaç, bir döngüsüz grafdır Ağaçta, kök ve yapraklar var, bütün yaprakların tek ana düğümü var ve birkaç çocuğu olabilir İkili ağaçlarda tüm düğümlerinin iki coğuğu var ve soldaki alt ağaçları her zaman daha küçük ve sağdaki daha büyüktür Arama, max, min, ekleme, kaldırma işlemler var, verilerle işletme O(H) vakit gerekir

Özet

• • • •

O(H) vakit maliyeti önemli avantajdır Genel durumda, H=O(log n), ama H=O(n) de kolayca alabiliriz Kendi kendini dengeleyen ağaçlar, sürekli denge kontrol ederek, gerekirse sağdaki ve soldaki alt ağaçlarını değiştirip dengeyi sağlar (“pivot”) Dengeli ağaçlar sürekli en optimum veri depolanmayı sağlar