Transcript MPM
MPM
MPM
MPM
MPM
MPM的意義
MPM 是
Multi-Process-Model 的縮寫
它是根據多程序推理及多模式思考的設計
理念,將教材經過縝密的系統化編序所設計而
成的一種適合孩童循序漸進的數學學習計畫。
多程序Multi-Process思考深度
多程序的學習讓孩子在處理多步驟的思考題
型中,加強解決高難度問題的能力。
多模式Multi-Modela思考廣度
多模式的訓練讓孩子用不同角度解析問題,
以拓寬孩子的思考廣度,並提升高彈性解決
問題的能力。
MPM 數學課程範圍
MPM 數學從 幼稚園、國小、國中
到高一 ( 5—16歲) 搭配九年一貫的
學習階段,做最詳盡實用的規劃。
MPM 的五大目標-透過完整的MPM數學學習系統
我們希望孩子達到
以下五大目標
經由計算能力和觀念理解的均衡發展,來增
進孩子整體的數學能力。
透過獨立思考、多元思考及創造性思考三者
並重的培育,來促進孩子將來真正解決問題
的能力。
藉著個人學習系統(PSL)的磨練歷程,養成孩
子獨立、自發、主動、積極的學習態度。
讓孩子在不斷地挑戰新奇與未知的題型之中,
建立最堅強的自信心。
讓孩子在多變化、多采多姿的題型練習過程
裡,重拾學習數學的樂趣。
MPM數學把每一個孩子都當成主角
在教室裡 -孩子不須去迎合不同老師的教學習慣
MPM的老師首先利用教材直接與孩子溝通,
在孩子最需要的時候,精準地導引思考關鍵,
讓孩子沒有機會成為班上的隱形寶寶,每個
孩子都充滿了自己想出來的成就感。
MPM的學習系統
MPM數學是針對每一位學童安排的個
人化自學課程,經過個人化學習系統
的概念,指導老師刻意提供最少的直
接講述,讓學生主動積極地探索嘗試
而獲得最佳的自學效果。
MPM
的
特
色
MPM
的
特
色
MPM
的
特
色
MPM
的
特
色
個人化學習系統
個人化學習系統 與 傳統團體式
教學對孩子效果大不同
傳統團體式教學
個人化學習系統
上
課
模
式
‧可以彈性安排混齡上課。
‧不同年級必須分班上課。
‧雙向式互動完全溝通。
‧單向式教學,老師講述,學生只能被動 聆聽。
‧學員直接參與式學習。
‧著重在老師「教」的方面,學生模仿老 師解題。
‧全程學習,高連貫性,
‧長期聆聽模仿,讓孩子只等老師給答案。
讓孩子學會自行解題 。
學
習
進
度
‧依個人狀況安排專屬進度。
‧依個人狀況安排專屬教材。
‧全班進度統一,無法考量學生個別差異。
‧各班上課時間固定,學生無法自由選擇上課時間。 ‧依個人狀況安排專屬上課時間。
‧招生有一定時間,新生無法中途插班。
‧新生可隨時彈性安排加入。
‧每次定時上下課,進度難以掌握。
‧每次的進度一定要完成,
養成今日事、今日畢的好習慣。
學
習
成
效
‧養成只會聆聽被動式的學習態度。
‧遇到沒學過的問題容易放棄。
‧應付考試、被分數押著走。
‧易養成被動與依賴的習慣。
‧主見少,多以「老師說......」為判斷的依據。
‧容易造成依賴的習慣。
‧養成自發性、思考性的學習態度。
‧喜歡挑戰新鮮、沒學過的問題。
‧自我成就感高,享受學習樂趣。
‧養成自動自發的習慣。
‧有主見、有自己判斷的依據。
‧容易建立自我的信心。
MPM數學個別化教學法
VS.
傳統直接教學法差異點
MPM數學
個別化教學法
(自學系統)
傳統直接教學法
(填鴨式)
機構
MPM數學課程
學校教學模式
坊間數學課程
教學基本型
式
個別輔導
雙向式
集體上課
單向式
使用的教材
編序螺旋式教材
(整合式題目設計
)
單元性教材
(評量、講義)
教科書及習作
學習進度
獨立進度
統一進度
MPM數學個別化教學法
VS.
傳統直接教學法學習效應
MPM數學個別化教學法
(自學系統)
◎自發思考式學習
學
習
效
應
◎獨立性強
◎對於沒有學過的題目喜歡
挑戰(勇於嘗試的態度)
◎自我成就感高(自信心 )
◎解決問題的能力提昇
傳統直接教學法
(填鴨式)
◎聆聽被動式學習
◎依賴性強
◎對於沒有學過的
問題,先入為主
覺得自己不會
@ MPM高手班–培養特殊頂尖高手
gaMPM特訓班–讓資優生成為特優生
gVMPM資優班–培養創意型的資優生
資優班
MPM數學資優班目標﹕
培養創意型的資優生充分激發其內在
的潛能
並展現到邏輯思維及解決問題的能力
特訓班
MPM 數學特訓班目標﹕
1. 挑戰班上前三名
2. 考取國中資優班
~~讓資賦優異的孩子成就非凡
高手班
MPM 數學高手班目標﹕
1. 挑戰全校前三名
2. 參加國際數學競賽
~~讓孩子的天賦完美展現
第一階段---認知啟蒙階段
(幼稚園至國小一年級)
這個時期,每一個孩子從數、量、形和空
間的認知開始,作第一步的探索、發現與
學習。從孩童踏進數學世界的第一步,
MPM對課程作最嚴謹的螺旋式安排,無論
一對一、異同、比較、觀察、規律、手眼
協調、形色認知、空間對應等,面面俱到,
讓孩子的數理能力從小被完全激發引導,
開展出未來無限的可能。
第二階段---觀念形成階段
(國小二年級至四年級)
這個階段,孩子對基礎運算、加減乘除、
空間度量、幾何圖形、分數小數、生
活應用,逐漸的從認識到熟悉每一個概念。
MPM數學以特殊的編序教材,按部就班的
讓孩子建立明確的概念和清晰的思路,以
便順利的邁向解題能力的提升。
第三階段---活用解題階段
(國小五年級至國中一年級)
MPM數學在這個階段著重觀察力、思考
力、推理力和基礎數學能力的整合。我
們提供最多的機會讓孩子發揮創造性思考
的能力,在面對各種問題時,迅速有效地
找到最佳的解決途徑。
第四階段---推理論證階段
(國中二年級至高中一年級)
當孩子解決問題的能力培養到一定的水準,就
要開始面對數學領域的另一個重要課題「數理
論證」。我們在這個階段特別重視孩子在面對
問題的時候,要以清晰透徹的思維、條理分明
的表達,剖析問題、解決問題,並予以完全的
論證。
MPM數學 檢測說明
配合中華國際數學教育協會聯合舉辦。
大地區統一地點考試。
全體 學生,每年一次統一檢定考試,
以作為升等考試的依據,並參加數學競
賽爭取榮譽。
MPM數學六大領域基本檢測:
(1) 數與計算
(2) 量與實測
(3) 圖形空間
(4) 統計與機率
(5) 關係
(6) 代數