Transcript MPM
MPM MPM MPM MPM MPM的意義 MPM 是 Multi-Process-Model 的縮寫 它是根據多程序推理及多模式思考的設計 理念,將教材經過縝密的系統化編序所設計而 成的一種適合孩童循序漸進的數學學習計畫。 多程序Multi-Process思考深度 多程序的學習讓孩子在處理多步驟的思考題 型中,加強解決高難度問題的能力。 多模式Multi-Modela思考廣度 多模式的訓練讓孩子用不同角度解析問題, 以拓寬孩子的思考廣度,並提升高彈性解決 問題的能力。 MPM 數學課程範圍 MPM 數學從 幼稚園、國小、國中 到高一 ( 5—16歲) 搭配九年一貫的 學習階段,做最詳盡實用的規劃。 MPM 的五大目標-透過完整的MPM數學學習系統 我們希望孩子達到 以下五大目標 經由計算能力和觀念理解的均衡發展,來增 進孩子整體的數學能力。 透過獨立思考、多元思考及創造性思考三者 並重的培育,來促進孩子將來真正解決問題 的能力。 藉著個人學習系統(PSL)的磨練歷程,養成孩 子獨立、自發、主動、積極的學習態度。 讓孩子在不斷地挑戰新奇與未知的題型之中, 建立最堅強的自信心。 讓孩子在多變化、多采多姿的題型練習過程 裡,重拾學習數學的樂趣。 MPM數學把每一個孩子都當成主角 在教室裡 -孩子不須去迎合不同老師的教學習慣 MPM的老師首先利用教材直接與孩子溝通, 在孩子最需要的時候,精準地導引思考關鍵, 讓孩子沒有機會成為班上的隱形寶寶,每個 孩子都充滿了自己想出來的成就感。 MPM的學習系統 MPM數學是針對每一位學童安排的個 人化自學課程,經過個人化學習系統 的概念,指導老師刻意提供最少的直 接講述,讓學生主動積極地探索嘗試 而獲得最佳的自學效果。 MPM 的 特 色 MPM 的 特 色 MPM 的 特 色 MPM 的 特 色 個人化學習系統 個人化學習系統 與 傳統團體式 教學對孩子效果大不同 傳統團體式教學 個人化學習系統 上 課 模 式 ‧可以彈性安排混齡上課。 ‧不同年級必須分班上課。 ‧雙向式互動完全溝通。 ‧單向式教學,老師講述,學生只能被動 聆聽。 ‧學員直接參與式學習。 ‧著重在老師「教」的方面,學生模仿老 師解題。 ‧全程學習,高連貫性, ‧長期聆聽模仿,讓孩子只等老師給答案。 讓孩子學會自行解題 。 學 習 進 度 ‧依個人狀況安排專屬進度。 ‧依個人狀況安排專屬教材。 ‧全班進度統一,無法考量學生個別差異。 ‧各班上課時間固定,學生無法自由選擇上課時間。 ‧依個人狀況安排專屬上課時間。 ‧招生有一定時間,新生無法中途插班。 ‧新生可隨時彈性安排加入。 ‧每次定時上下課,進度難以掌握。 ‧每次的進度一定要完成, 養成今日事、今日畢的好習慣。 學 習 成 效 ‧養成只會聆聽被動式的學習態度。 ‧遇到沒學過的問題容易放棄。 ‧應付考試、被分數押著走。 ‧易養成被動與依賴的習慣。 ‧主見少,多以「老師說......」為判斷的依據。 ‧容易造成依賴的習慣。 ‧養成自發性、思考性的學習態度。 ‧喜歡挑戰新鮮、沒學過的問題。 ‧自我成就感高,享受學習樂趣。 ‧養成自動自發的習慣。 ‧有主見、有自己判斷的依據。 ‧容易建立自我的信心。 MPM數學個別化教學法 VS. 傳統直接教學法差異點 MPM數學 個別化教學法 (自學系統) 傳統直接教學法 (填鴨式) 機構 MPM數學課程 學校教學模式 坊間數學課程 教學基本型 式 個別輔導 雙向式 集體上課 單向式 使用的教材 編序螺旋式教材 (整合式題目設計 ) 單元性教材 (評量、講義) 教科書及習作 學習進度 獨立進度 統一進度 MPM數學個別化教學法 VS. 傳統直接教學法學習效應 MPM數學個別化教學法 (自學系統) ◎自發思考式學習 學 習 效 應 ◎獨立性強 ◎對於沒有學過的題目喜歡 挑戰(勇於嘗試的態度) ◎自我成就感高(自信心 ) ◎解決問題的能力提昇 傳統直接教學法 (填鴨式) ◎聆聽被動式學習 ◎依賴性強 ◎對於沒有學過的 問題,先入為主 覺得自己不會 @ MPM高手班–培養特殊頂尖高手 gaMPM特訓班–讓資優生成為特優生 gVMPM資優班–培養創意型的資優生 資優班 MPM數學資優班目標﹕ 培養創意型的資優生充分激發其內在 的潛能 並展現到邏輯思維及解決問題的能力 特訓班 MPM 數學特訓班目標﹕ 1. 挑戰班上前三名 2. 考取國中資優班 ~~讓資賦優異的孩子成就非凡 高手班 MPM 數學高手班目標﹕ 1. 挑戰全校前三名 2. 參加國際數學競賽 ~~讓孩子的天賦完美展現 第一階段---認知啟蒙階段 (幼稚園至國小一年級) 這個時期,每一個孩子從數、量、形和空 間的認知開始,作第一步的探索、發現與 學習。從孩童踏進數學世界的第一步, MPM對課程作最嚴謹的螺旋式安排,無論 一對一、異同、比較、觀察、規律、手眼 協調、形色認知、空間對應等,面面俱到, 讓孩子的數理能力從小被完全激發引導, 開展出未來無限的可能。 第二階段---觀念形成階段 (國小二年級至四年級) 這個階段,孩子對基礎運算、加減乘除、 空間度量、幾何圖形、分數小數、生 活應用,逐漸的從認識到熟悉每一個概念。 MPM數學以特殊的編序教材,按部就班的 讓孩子建立明確的概念和清晰的思路,以 便順利的邁向解題能力的提升。 第三階段---活用解題階段 (國小五年級至國中一年級) MPM數學在這個階段著重觀察力、思考 力、推理力和基礎數學能力的整合。我 們提供最多的機會讓孩子發揮創造性思考 的能力,在面對各種問題時,迅速有效地 找到最佳的解決途徑。 第四階段---推理論證階段 (國中二年級至高中一年級) 當孩子解決問題的能力培養到一定的水準,就 要開始面對數學領域的另一個重要課題「數理 論證」。我們在這個階段特別重視孩子在面對 問題的時候,要以清晰透徹的思維、條理分明 的表達,剖析問題、解決問題,並予以完全的 論證。 MPM數學 檢測說明 配合中華國際數學教育協會聯合舉辦。 大地區統一地點考試。 全體 學生,每年一次統一檢定考試, 以作為升等考試的依據,並參加數學競 賽爭取榮譽。 MPM數學六大領域基本檢測: (1) 數與計算 (2) 量與實測 (3) 圖形空間 (4) 統計與機率 (5) 關係 (6) 代數