Transcript Document
核 医 学
昆明医科大学第一临床学院
核医学教研室
朱高红
2014/02/28
Personal resume
• Gaohong Zhu, Associate Professor ,
Master of Medicine.
• Director of the department of Nuclear
Medicine
• Visiting scholar in US (last year)
是应用放射性核素诊断、治
疗患者疾病并进行基础医学科
学研究的一门医学学科;广义
Category of NM
Nuclear medicine
则是核素和核射线在医学上的
应用及其理论研究的总称。
diagnosis
Diagnosis in vivo
SPECT/CT, PET/CT
imaging
treatment
Diagnosis in
vitro
Non-imaging
(function)
DiscoveryTM PET/CT Elite Scaner
第一章 核物理基础知识
第一节 核物理基本概念
第二节 核衰变及衰变规律
第三节 射线和物质的相互作用
第四节 常用的辐射剂量及其单位
第一节 核物理基本概念
核 爆 炸
一、原子结构
原子核 位于原子的中央,内含电中性的
中子及带正电荷的质子;
原子
电
子
带负电荷,质量为中子 1/1837,
围绕原子核沿轨道运行,情况就
好像行星环绕太阳运行一样。
质子数(Z)=原子序数=核外电子数
质量数(A)=质子数(Z)+中子数(N)
表示: AZХN ,AХ
把原子核外分成七个运动区域,又叫电子层,
分别用n=1、2、3、4、5、6、7…表示,分别
电子能量
称为K、L、M、N、O、P、Q…,n值越大,说
明电子离核越远,能量也就越高。
H
L
Ener gy
原子核由于不断运动而具有一定的能量。一般
情况下,原子核都处于能量最低的状态,称为
原子核的
能级 基态(ground state);在一定条件下,如在某些
核反应、核裂变及放射性衰变后,原子核可以
暂时处于较高的能量状态称为激发态(excited
state) 。
激发态的原子核可表示为Amx,如99mTc。处于激
发态的核素都很不稳定,要释放过剩的能量而回
到基态。
在工厂的核反应堆中,中子流(n)轰击靶核钼
(98Mo),98Mo释放γ射线后转变成99Mo,再把
99Mo装在发生器(层析柱)内运到使用部门。
99Mo的半衰期67小时,释放β-射线后衰变成激
发态的99mTc,放射性药房或核医学科工作人员
用生理盐水淋洗发生器就可得到99mTc,见下图
负压抽吸瓶
将 带 有 99mTcO4- 吸
入负压瓶内。
生理盐水
99Mo/99m Tc
generator
二、几个基本概念
1、元素(element)
2、同位素(isotope)
3、同质异能素(isomer)
4、核素(nuclide)
5、稳定性核素(stable nuclide)
6、不稳定性核素(unstable nuclide)
1、元素(element):Z相等的一类原(核外电
子数和最外层电子数相等,化学性质相同)
如C、H、O为不同元素;
2、同位素(isotope):某一元素含有不同的
中子数目,则称为该元素的同位素(Z相等,
N不等)如:123I、125I、131I;
氢元素的同位素
氕(piě)
+
++++
+
99 Tc
+
氚
(chuan)
3、同质异能素(isomer): Z、N相等,能量
(E)状态不等,如:99mTc/99Tc,113mIn/113In;
γ射线
+
+ +
++
+
99mTc
+
氘(daò)
4、核素(nuclide):凡具有一定原子序数(Z)
、原子质量(A)和处于特定能量(E)状态
(特定核特征)的原子称为核素;
5、稳定性核素(stable nuclide):是指原
子核不会自发地发生核变化的核素,已发现
的仅有274种,它们的质子和中子处于平衡
状态。
6、不稳定性核素(unstable nuclide)又称放
射性核素,能按照自身的规律、自发地核衰
变;衰变时放出核射线并变为新核素;有特定
半衰期的核素。*
第二节 核衰变及衰变规律
一、核衰变(nuclear decay)
原子核只有在中子和质子的数目之间保持一定的比例时,
才能稳定,当原子核(母核,parent nuclide)中质子
数过多或过少,或者中子数过少或过多,原子核便不稳
定。这时的原子核就会自发地放出射线,转变成另一种
核素(子核,daughter nuclide),同时释放出一种或
一种以上的射线。这个过程又称为放射性衰变
(radiation decay)或蜕变。核衰变是由原子核内部的
矛盾运动决定的。
二、核衰变的类型
放射性核素主要衰变方式有
α
1、α衰变
2、β-衰变
β
γ
3、β+衰变
4、γ衰变
5、核外电子俘获衰变
χ
ν
1、α衰变(alpha decay)
不稳定原子核自发地放射出α粒子(alpha
particle)而变成另一个核素的过程称为α衰变。
质量数减少4,质子数减少2,在元素周期表中
前移2位。
机制: 核子总数过多,而致斥力>引力而发生。
大多见于A>200 、Z>83的天然、长T1/2 的放
射性核素。
α衰变图示和衰变方程
daughter
nuclide
parent
nuclide
+
+
++
+
+
+
+
+
+
+
A Χ
Z
helium-4
nucleus
→
A-4
Z-2
+
+
+
+
Y+ α(42He)+Q(energy)
α衰变(从母核中射出的4He原子核)
2、 -衰变( -minus decay)
衰变主要发生在质量较轻、中子相对过剩的核
素。核中一个中子转化为质子,总核子数不变,
同时释出一个负电子(来自核的负电子
negation称粒子即- )及一个反中微子故子
核的原子序数比母核增加1,原子质量数不变。
反中微子是一种质量极小的不带电基本粒子,
穿透性极强,一般探测器不能测知。
-衰变图示和衰变方程
proton
electron
proton
+
+
+
neutron
A Χ
Z
→
90 Sr
38
A
Z+1Y+
→
Antineutrin
o
β-(0-1e)+ ⊽+ Q
90 Y
39
+ β- + ⊽ + 2.28Mev
3、+衰变( -plus decay)
衰变主要发生在中子相对不足的核素,可以看作
是-衰变相反的过程,即核中一个质子转化为中
子,同时释出一个正电子(positron,称粒子)
及一个中微子(neutrino,υ),故核子总数也
不变,原子序数减少1而原子质量数不变。υ也
是质量极小的不带电基本粒子,穿透性极强而很
难测知。
+衰变图示衰变方程
γ=0.51Mev
neutrino
positron
γ=0.51Mev
+
+
A Χ
Z
18
→
A Y+
Z-1
β+(01e)+ V + Q
18 O + β+ + v + 0.663MeV
F
→
9
8
4、电子俘获衰变
(electron capture,EC)
EC发生在中子相对不足的核素。原子核先从
核外较内层的电子轨道俘获一个电子,使之
与一个质子结合转化为中子,同时发射出一
个中微子。故原子质量数不变而原子序数减
少1。
电子俘获衰变方程
A Χ
Z
125
+ 0-1e →
A Y
Z-1
+ V+Q
0
125 Te(碲) + v + 0.036Mev
I(碘)+
→
53
-1e
52
机制:见于某些贫中子放射性核素。在EC基础上,按
Bohr理论,外层电子将跃迁填补内层轨道,多于能量
以标识(特征)X-ray发射或传给更外层电子使之脱
出为自由电子,即俄歇电子( Auger electron)。
中微子
特征X
射线
γ射线
俄歇电子
+
+
+
+
+
核外
电子
+
+
核外电子
轨道空位
7铍(Be) 7锂(Li)
4
3
+ υ + Q
电
子
俘
获
衰
变
图
5、γ衰变
(gamma decay 或γ transition)
• 上述四种衰变的子核可能先处于激发态,在
不到1微秒的时间内回到基态并以γ光子的形
式释出多余的能量。此过程称γ衰变或γ跃
迁。
• 如果γ 跃迁释出的能量传给一个核外电子(K
层电子几率最高),使之脱离轨道而发射出
去这过程就是内转换。发射的电子称内转换
电子(internal conversion electron)
• 发生内转换后K层轨道的空缺和EC的空缺相
似,随后可由外层电子补缺,从而又发射X
线和俄歇电子( Auger electron)
常用核射线及其性质
射线名称
α
β
γ
电性
(+)
(-)
(±)
本质
粒子流
电子流
光子流
电离能力
强
中
弱
穿透能力
弱
中
强
传播速度
(空气)
2~2.5万㎞/sec
20万㎞
/sec
30万㎞
/sec
射线的穿透力
三、核衰变规律
1.放射性衰变规律 (radiation decay rule)
2.物理半衰期*
(physical half life;T1/2)
3.生物半衰期*
(biological half life;
有效半衰期*
(effective half life;Teff)
4、放射性活度* (radioactivity;A)
1、放射性核素衰变规律
任何放射性核素其放射性活度随时间减弱的速度虽然各
不相同,但都服从指数规律,亦即其原子数随时间t按
指数函数的规律而减少:放射性活度的自然对数值对t
是直线关系。只是直线的斜率(λ,衰变常数)值各不
一样,衰减愈快,则λ值也愈大。 λ值表示了在单位
时间内衰变的原子数占当时存在的原子总数的百分比。
放射性核素衰变规律(接)
遵循衰变定律:
即单位时间内衰变的原子数与当时存在的原
子总数成正比
dN∝Ndt
积分后得
N=N0e-λt
各种放射性核素的总放射性活度都随时间按
指数函数规律而减少:It = I0e-λt
Ι
lnΙ
1
放
射
性
活
度
0.5
0
6
12
18
24
小时
时间t
原子数随时间t按指数函数的规律而减少:
放射性活度的自然对数值对t是直线关系。
只是直线的斜率(λ,衰变常数)值各不
一样,衰减愈快,则λ值也愈大。 λ值表
示了在单位时间内衰变的原子数占当时存
在的原子总数的百分比。
2.物理半衰期*
(physical half life;T1/2)
在实际工作中我们常以物理半衰期来表示各种
放射性核素的衰减速度。物理半衰期就是放射
性活度(强度)减弱一半所需经过的时间,用
(T1/2 或Tp )表示 。
T½和λ值之间可以互相换算
T½ =
0.693
λ
λ=
0.693
T½
计算实例*
198Au放射性核素,5月20日从北京发货时间测得活度
为100mCi。如果运到昆明到5月27日才实际使用,试
计算此时还有多少毫居里198Au?
∵
∴
N=N0e-λt
198Au半衰期2.7天。
N=N0e-0.693×t/T½
N=100×e-0.693×7/2.7
N=100×0.165=16.5
也可以7/2.7=2.59≈2.6通过查通用衰变计算表得
0.165×100=16.5
3、 生物半衰期 ( Tb )*
有效半衰期 ( Teff)
•
放射性核素通过生物代谢从体内排出原来一半
所需的时间,称为生物半衰期。
•
物理衰变与生物的代谢共同作用而使体内放
射性核素减少一半所需要的时间,称有效半衰
期。
T1/2·Tb
Te=
• Te、Tb、T1/2三者的关系为:
T1/2+ Tb
4、放射性活度(radioactivity, A)
放射性核素在单位时间内发生衰变的原子核的
次数称为放射性活度(即衰变率)。
放射性活度的国际制单位的专用名称为贝可勒
尔(Becquerel),简称贝可,符号为Bq,即
每秒钟发生1次衰变。常用单位是居里(Ci)
等于每秒钟发生3.7×1010 次衰变。
1Bq= 2.703×10-11 Ci
1Bq= 2.703×10-8m Ci
1Bq= 2.703×10-5 µ Ci
放射性比活度:单位质量或单位摩尔物质中
含有的放射性活度,单位是
Bq/g,MBq/g、MBq/mol。
放射性浓度*:单位体积溶液中所含的放射性
活度,单位是Bq/ml、mCi/ml等。
第三节 射线和物质的相互作用
一、带电粒子与物质的相互作用
二、光子与物质的相互作用
三、
什么是放射线?
• 放射线是指波长较短的电磁波和微小粒子
的流动现象。
• 放射线通常简称为射线;
• 在放射防护领域,不包括可见光(红、橙、
黄、绿、青、蓝、紫)、通信用无线电波
等非电离辐射 。
一、带电粒子与物质的相互作用
1.电离与激发
(ionization and excitation)
2.散射
(scattering)
3.韧致辐射
(bremsstrahlung radiation)
4.湮没辐射
(annihilation radiation)
5.吸收
(absorption)
1、电离与激发
带电粒子(charged particles)通过物质时和物质原
子的核外电子发生静电作用,使壳层电子获得能量
脱离原子轨道形成自由电子而产生正负离子对的过
程称电离。
如果原子的电子所获得的能量还不足以使其脱离原
子,而只能从内层轨道跳到外层轨道。这时,原子
从稳定状态变成激发状态,这种作用称为激发。激
发的原子不稳定,退激时可释放出光子或能量。
电离图示
Incident
electron
Change the motion
direction of the
incident electron
Ionization
electron
激发图示
Incident
electron
Change the motion
direction of the
incident electron
Excited
electron
如果原子的电子所获得的能量还不足以使其脱离原子,而只
能从内层轨道跳到外层轨道。这时,原子从稳定状态变成激
发状态,这种作用称为激发。激发的原子不稳定,退激时可
释放出光子或能量。
电离和激发是一些探测器测量射线
的物质基础,是射线引起物理、化
学变化和生物效应的机制之一。
2、散射(scattering)
• β射线由于质量小,行进途中易受介质原子
核电场力的作用而改变原来的运动方向,这
种现象称为散射, 其中运动方向改变而能量
不变者称弹性散射。而α粒子由于质量较大,
散射一般不明显。
散射图示
Incident
electron
Scattered
electrons
3、韧致辐射
(bremsstrahlung radiation)
快速电子通过物质时,在原子核电场
作用下,急剧减低速度,电子的一部
分或全部动能转化为连续能量的X射线
发射出来,这种现象称韧致辐射。
3.韧致辐射 (bremsstrahlung )
X-ray
韧致辐射释放的能量与所通过介质的原子序数的
平方成正比,韧致辐射的强度随屏蔽物质的原子
序数增大而增大。因此,β射线的屏蔽要用原子
序数低的材料制成,如铝、塑料、有机玻璃等。
4、湮没辐射
(annihilation radiation)
• 正电子衰变产生的正电子,在介质中运行一
定距离(10-9S),当其能量耗尽时可与物质
中的自由电子结合(两个电子的静止质量相
当于1.022MeV的能量),而转化为两个方向
相反、能量各为0.511MeV的γ光子而自身消
失,称湮没辐射。
湮没辐射图示
质
子
正电子
湮没辐射
γ光子
0.511MeV
中
子
γ光子
0.511MeV
5、吸收 (absorption)
射线在电离和激发的过程中,射线的能量
全部耗尽,射线不再存在,称作吸收。吸
收前所经的路程称为射程。吸收的最终结
果是使物质的温度升高。
二、光子与物质的相互作用
• γ射线和X射线属于电磁辐射,都是中性光子
流,与物质相互作用方式相同。主要产生三
个效应。
1、光电效应
(Photoelectric effect)
2、康普顿效应 (Compton effect)
3、电子对效应 (Electron pair production)
1、光电效应
(Photoelectric effect)
低能(E γ<0.5 Mev) γ光子和原子中内
层壳层(如K、L层)电子相互作用,将全部
能量交给电子,使之脱离原子成为自由的光
电子的过程称为光电效应(photoelectric
effect)。光电效应发生的几率与入射光子
的能量及介质原子序数有关(负相关)。
photoelectron
Incident
photon
光电效应示意图
2、康普顿效应
(Compton effect)
能量较高的 γ光子与原子中的核外电子作用时,只将
部分能量传递给核外电子,使之脱离原子核束缚成为
高速运行的自由电子,而γ光子本身能量降低,运行
方向发生改变,称康普顿效应,释放出的电子称为康
普顿电子。康普顿效应发生的几率与光子的能量和介
质的密度有关,当γ光子的能量为500~1000keV时,康
普顿效应比较明显,介质的密度越大,康普顿效应越
明显。
Compton
electron
Incident
photon
Photon of
changing
direction
康普顿效应
3、电子对效应
(Electron pair production)
当γ光子的能量大于1.022MeV处于高能时,
在物质核电场作用下,其中1.022MeV的能
量转化为一个正电子和一个负电子的过程
叫电子对生成,剩余的能量变为电子对的
动能,又可发生电离和激发等。
electron
positron
Incident
photon
electron
电子对形成
电子对生成的几率与γ光子的能量和物质的
原子序数的平方成正比,即能量越高、物
质的原子序数越大,电子对生成越明显。
在核医学诊断中使用的γ光子一般能量较低,
故不发生电子对生成。
第六节、常用的辐射剂量及其单位
• 照射量
• 吸收剂量
• 剂量当量
照射量(exposure)是直接度量χ
各种射线对组织产生的生物效应与射线
吸收剂量是用来量度电离辐射与
种类有关,也与吸收剂量有关。由于不
或γ射线对空气电离能力的量,可
物质相互作用时,单位质量物质
同射线在相同吸收剂量下产生的生物效
间接反映χ,γ辐射场的强弱;是
吸收辐射能量多少的一个物理量。
应不同,故剂量当量是用适当的修正因
用来度量辐射场的一种物理量。指
在正常情况下,吸收剂量愈大,
子对吸收剂量进行加权,从而使修正后
标是在空气体积内所形成的次级电
的吸收剂量更好地反映辐射对机体的危
危
害亦愈大。国际单位为戈
害程度,剂量当量H定义为吸收剂量和其
子所产生的离子总电荷量,即χ或
(瑞),以Gy表示。定义是单位
它必要修正因子的乘积。
γ射线通过的空气时所放出的能量。
质量被照物质平均吸收的辐射能
H 剂量当量 =D 吸收剂量(Gy) ·Q 品质因
照射量的国际制单位是库仑/千克
量。旧有专用单位为拉德,以rad
子·N其它修正系数(N=1)
旧有单位为伦琴(R)。
剂量当量国际单位制单位为希(沃特),以
表示,
1Gy=100rad。
Sv表示。旧制专用单位为雷姆,以ram表示,
1伦琴=2.58×10-4库仑/千克
1Sv=100ram。
本章目的要求
一、掌握:原子核物理学相关的基础知识
二、熟悉:核医学常用的放射性活度及辐射
剂量单位。
三、了解:原子结构、核结构、原子核反应。
复习思考题、作业题
1.某元素的原子核外有3个电子层,最外层有5个电子,该原子核内的质
子数为(
)
A、14
B、15
C、16
D、17
2.某元素的原子核外有三个电子层,M层的电子数是L层电子数的1/2,
则该元素的原子是(
)
A、Li
B、Si
C、Al
D、K
3.两种元素原子的核外电子层数之比与它们的最外层电子数之比相等,
在周期表的前10号元素中,满足上述关系的元素共有(
)
A、1对
B、2对
C、3对 D、4对
4. 放射性核素、放射性活度、元素、核素、同位素、同质异能素、电离
、激发、湮灭辐射、光电效应、康普顿效应、剂量当量、照射量、吸
收剂量的定义。
5. 核衰变的方式?