Transcript 基本電學I
基本電學I 第4章 直流迴路 4-1 4-2 4-3 4-4 4-5 4-6 4-7 節點電壓法 迴路電流法 重疊定律 戴維寧定理 最大功率轉移定理 諾頓定理 戴維寧與諾頓等效電路之轉換 Chapter4 直流迴路 基本電學I 前言 在上一章,我們學會了基本串並聯電路的特性及其基本運算; 然而,真正的實用電路往往是更為複雜多變的網路架構,在面 對這些複雜多變的網路時,如果想要快速地求得某一元件的電 路特性(電流或電壓等)時,就必須使用更好的解電路技巧才能 做得到。 本章將介紹電路學中是很重要的定理和方法,包括節點電壓法、 迴路電流法、重疊定律、戴維寧定理、諾頓定理及最大功率轉 換定理等。本章著重在電路的分析、電路方程式的建立、電流 或電壓的運算及驗證;除了使用正確的方法、還要有細心的運 算技巧,方能正確快速的解題。 4-2 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1.1 相關名詞 節點電壓法主要是利用克希荷夫電流定律(KCL)及歐姆定律, 寫出節點的電流方程式,再解方程式求得節點電壓。 相關名詞: 1.節點:是指兩個或兩個以上支路 的連接點。(參考圖4-1) 2.參考節點:當作零電位或接地點 的節點;通常為最下方的節點。 3.節點電壓:各節點對參考節點之 間的電位差,如圖中的V1、V2及V3。 4.支路電流:節點電壓除以該節點 圖4-1 使用節點電壓法的電路標示 間的電阻,如圖中的I1、I2及I3。 4-3 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1.2 解題步驟 節點電壓法的解題步驟: 1.選定接地參考節點,其電壓值為零。 2.標示「獨立」的節點電壓如圖4-1中的V2。 所謂「獨立」是指其電壓值未知者,已知電壓者可以不需標 示如圖4-1中的V1及V3(此處V1=E1,V3=-E2)。 3.假設流入或流出「獨立節點」的電流方向,並以I1、I2、I3 及等標示之。 遇有已知電流(如電流源),則以其方向為該支路之電流方 向,如例題4-4。 4-4 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1.2 解題步驟 4.以歐姆定律寫出各支路電流的算式。 有N個節點的電路通常需列出N-1個算式,該支路如有電流 源者,直接以電流源電流為支路電流。 5.針對每一獨立節點寫出KCL電流方程式。 。 6.解聯立方程式,求出各節點電壓; 再依題目需求帶回步驟4.求得各支路電流。如果求得的電流 值為負的時候,表示:該電流的方向與步驟3.假設方向相反。 接著以一些例驗證節點電壓法的使用方法。 4-5 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1 節點電壓法用於電壓源及電流源 如下圖(a)所示,試求流過各電阻之電流大小及方向? (a) 例4-1圖 4-6 (b) Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1 節點電壓法用於電壓源及電流源 如下圖(a)所示,試求流過各電阻之電流大小及方向? (1)以下方公共點為接地參考節點,如圖(b)。 (2)選定獨立節點,並設定其節點電壓為V1。 (a) (3)假設各支路電流方向,並標示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。 I1 = V - (- 12) V1 - 6 V ,I 2 = 1 ,I 3 = 1 3 2 6 (5) 以KCL寫出電流方程式: I1+I2+I3=0 V1 - 6 V1 - (- 12) V1 + + = 0 3 2 6 4-7 例4-1圖 (b) Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-1 節點電壓法用於電壓源及電流源 (6)解方程式,求出節點電壓: 選通分再去分母得2V1-12+3V1+36+V1=0,故,V1=-4 V 。 (7) 代入步驟(4)求得各支路電流: V1 - 6 - 4 - 6 10 = = A 3 3 3 V - (- 12) - 4 + 12 I2 = 1 = = 4A 2 2 V - 4 2 I 23 = 1 = = A 6 6 3 I1 = 10 (負號表示方向假設錯誤,應為向右) (方向向右) (負號表示方向假設錯誤,應為向上) 2 (8) 驗證 (V1節點) : I1+I2+I3= - 3 + 4 - 3 = 0,符合KCL定律。 4-8 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 1.將本題中6V極性上下顛倒,重算各電阻之電流。 4-9 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 1.將本題中6V極性上下顛倒,重算各電阻之電流。 (1)以下方公共點為接地參考節點,如圖(b)。 (2)選定獨立節點,並設定其節點電壓為V1。 (3)假設流入或流出「獨立節點」的各支路電流方向,並標 示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。 V1 - (- 6) V1 - (- 12) V1 I1 = 3 ,I 2 = 2 ,I 3 = 6 (5) 以KCL寫出電流方程式: I1+I2+I3=0 4-10 V1 + 6 V1 + 12 V1 + + = 0 3 2 6 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 1.將本題中6V極性上下顛倒,重算各電阻之電流。 (6)解方程式,求出節點電壓: 通分再去分母得2V1+12+3V1+36+V1=0,故,V1=-8 V 。 (7)代入步驟(4)求得各支路電流: V1 + 6 - 8 - 6 2 (負號表示方向假設錯誤,應為向右) = = A 3 3 3 V - (- 12) - 8 + 12 I2 = 1 = = 2A (方向向右) 2 2 V - 8 4 (負號表示方向假設錯誤,應為向上) I3 = 1 = = A 6 6 3 2 4 (8) 驗證 (V1節點) : I1+I2+I3= - 3 + 2 - 3 = 0,符合KCL定律。 I1 = 4-11 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-2 節點電壓法應用於多節點電路 如下圖(a)所示,試求流過各電阻之電流大小及方向? (b) (a) 例4-2圖(1) 4-12 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-2 節點電壓法應用於多節點電路 (1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=6V 。 (3)對V2點,假設各支路電流方向,並標示I1、I2、I3。 (4)以KCL寫出電流方程式: I1+I2=I3 12 - V2 6 - V2 V + = 2 6 12 4 4-13 ,通分母後得24-2V2+6-V2=3V2 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-2 節點電壓法應用於多節點電路 (5)解方程式,求出節點電壓V2 =5V 。 (6)再代入步驟(4),求得各支路電流。 I1 = 12 - V2 12 - 5 7 = = A 6 6 6 I3 = V2 5 = A 4 4 (向下) (向右) I2 = 6 - V2 6- 5 1 = = A(向左) 12 12 12 I4 = V1 - V3 12 - 6 = = 1.2A(向右) 5 5 7 1 5 I 3 ,符合KCL定律。 (7)驗證(對V2點而言):I1+I2= 6 12 4 4-14 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 2.如右圖(2)所示,求流經12Ω及12V的電流。 例4-2圖(2) 4-15 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 2.如右圖(2)所示,求流經12Ω及12V的電流。 (1)以下方公共點為接地參考節點。 例4-2圖(2) (2)設節點電壓:V1、 V2 、 V3 ,並從圖中得知:V1=12V,V3=20V 。 (3)對V2點,假設各支路電流方向,並標示I1、I2、I3。 (4)以KCL寫出電流方程式: I1+I2=I3 12 - V2 - 20 - V2 V + = 2 ,通分母後得24-2V2-60-3V2=V2 6 4 12 4-16 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 2.如右圖(2)所示,求流經12Ω及12V的電流。 (5)解方程式,求出節點電壓V2 =6V 。 例4-2圖(2) (6)再代入步驟(4),求得各支路電流。 I1 = 12 - V2 = 3A (向右) 6 流經12之電流= I 3 = I4 = I2 = - 20 - V2 = 3.5A 4 V2 = 0.5A 12 12 - (- 20) V1 - V3 = = 4A 8 8 (向上) (向右) 流經12V之電流= I4+ I1=4+3=7A(向下) 。 4-17 (向右) Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-3 節點電壓法用於交叉電源電路 如下圖(a)所示,試求流過各電阻之電流大小及方向? (a) (b) 例4-3圖 4-18 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-3 節點電壓法用於交叉電源電路 (1)選定中心節點,並設節點電壓為V0,如圖(b)。 (2)假設各支路電流方向均朝外,並標示 I1、I2、I3 、 I4 。 (3)以KCL寫出電流方程式: I1+I2+I3+I4=0 V0 (3) V0 12 V0 (5) V0 8 0 4 4 4 4 (4)解方程式,求出節點電壓V0 =3V。 4-19 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-3 節點電壓法用於交叉電源電路 (5)再代入步驟(4)求得各支路電流。 V0 ( 3) 3 3 1.5A 4 4 V 12 3 12 I2 0 2.25A 4 4 V ( 5) 3 5 I3 0 2A 4 4 I1 I4 V0 8 3 8 1.25A 4 4 (方向向上) (方向假設錯誤,正確應為向左) (方向向下) (方向假設錯誤,正確應為向右) (6)驗證:I1+I2+I3+I4=1.5-2.25+2-1.25=0,符合KCL定律。 4-20 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-4 節點電壓法用於兩個電流源電路 如下圖(a)所示,試求V1及V2電壓各為何? (a) (b) 例4-4圖 4-21 Chapter4 基本電學I 直流迴路 4-1 節點電壓法 4-4 節點電壓法用於兩個電流源電路 (1)以下方公共點為接地參考節點,如圖(b)。 (2)設節點電壓:V1、 V2 。 (3)假設各支路電流方向,並標示 I1、I2 、 I3、I4 、 I5。 (4)針對V1點,以KCL寫出電流方程式:I1=I2+I3 4 V1 V1 V2 5V1 2V2 48 4 6 ………… (5)針對V2點,以KCL寫出電流方程式:I3=I4+I5 V1 V2 V2 2 V1 2V2 12 6 6 ………… (5)解方程式 、 ,求出節點電壓。 V1 =9V,=-1.5V 4-22 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 迴路電流分析法是利用克希荷夫電壓定律(KVL)及歐姆定律,列 出各迴路的電壓方程式,再解聯立方程式求得迴路電流。 迴路電流法的解題步驟: 1.決定最小的迴路數,也就是網目數,如圖4-2(a)的最小迴路數 為2。 2.設定各迴路電流方向,可為順時針或逆時針,並標示迴路電流 之名稱例如I1、I2及I3等。 當迴路中有電流源存在時,即可以該電流源的電流值為該迴路之 電流,不須再計算,如圖4-2(b)之I2電流大小及方向應與電流源I相同, 若預設相反之電流方向,其大小為-I。 4-23 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 (a) (b) 圖4-2 迴路電流法解題說明圖 4-24 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 3.以KVL寫出各迴路的電壓方程式。其參考格式如下: 「迴路內各電阻之和」×「迴路電流」± 「相鄰迴路間各電阻之和」×「相鄰迴路電流」=「電動勢代數和」 相鄰迴路間的電阻稱為「共用電阻」,如圖4-2中的R2。 ±值的決定:當流過共用電阻的相鄰迴路電流方向相同時,取正值。 當流過共用電阻的相鄰迴路電流方向相反時,取負值。 左迴路:(R1+R2) × I1+ R2I2)=E 右迴路:R2I2 +(R2+R3)×I2+=0 4.解聯立方程式,求出各迴路電流。 如果求得的電流值為負的時候,表示該電流的方向與步驟2.假設方向 相反。接著以一些實例驗證迴路電流法的使用方法。 4-25 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4-5 迴路電流法用於兩電壓源電路 試以迴路電流法求圖(a)中各電阻上之電流。 (a) (b) 例4-5圖(1) 4-26 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4-5 迴路電流法用於兩電壓源電路 試以迴路電流法求圖(a)中各電阻上之電流。 (1)設定各迴路的電流方向如圖(b)。 (2)標示各迴路電流為Ia、 Ib 。 (3)以KVL寫出各迴路的電壓方程式。 左迴路:(2+3+1) -1Ib=13-2 → 6Ia-1Ib=11 ………… (a) 右迴路:-1Ia+(1+2+1) Ib=2 → -1Ia+4Ib=2 ………… (4)解方程式,求出各迴路電流 × 6+1 得23Ib=23, ∴Ib=1A 代入 4-27 ………… 得 Ia=1A (5)求各元件的電流 I1= Ia=2A , I2= Ib=1A , I3= Ia - Ib=2-1=1A (b) 例4-5圖(1) Chapter4 基本電學I 直流迴路 4-2 迴路電流法 3.將本例改以節點電壓法解之。 (a) 4-28 例4-5圖(1) (b) Chapter4 基本電學I 直流迴路 4-2 迴路電流法 3.將本例改以節點電壓法解之。 (a) (1)以下方公共點為接地參考節點。 例4-5圖(1) (b) (2)選定獨立節點,並設定其節點電壓為V1。 (3)假設流入或流出「獨立節點」的各支路電流方向,並標示如I1、I2、I3等。 (4)以歐姆定律寫出各支路電流的算式。 I1 = 4-29 13 - V1 V1 V - 2 ,I 2 = ,I 3 = 1 2+ 3 2+ 1 1 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 3.將本例改以節點電壓法解之。 (a) (5)以KCL寫出電流方程式:I1+I2+I3=0。 例4-5圖(1) 13 - V1 V1 V - 2 = + 1 2+ 3 2+ 1 1 (6)解方程式,求出節點電壓: 通分再去分母得39-3V1=5 V1+15V1-30,故,V1=3 V (7)代入步驟(4)求得各支路電流: I1 = I3 = 4-30 13 - V1 = 2A 2+ 3 (向右) V1 - 2 = 1A 1 (向下) I2 = V1 = 1A (向右) 2+ 1 (b) Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4.如圖(2)所示之電路,電壓VA與VB分別為何? 例4-5圖(2) 4-31 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4.如圖(2)所示之電路,電壓VA與VB分別為何? 左右兩側迴路均設定為順時針, 根據KVL,電壓升等於電壓降 右迴路 VA+4=3+6+1,得:VA =6 V 左迴路 20+1=5+6+ VB,得:VB =10 V 例4-5圖(2) 4-32 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4-6 迴路電流法用於電壓源及電流源電路 試以迴路電流法求圖(a)中各電阻上之電流I1、I2、I3。 (a) (b) 例4-5圖(1) 4-33 Chapter4 基本電學I 直流迴路 4-2 迴路電流法 4-6 迴路電流法用於電壓源及電流源電路 (1)設定各迴路的電流方向如圖 (b)。 (2)標示各迴路電流為Ia、Ib。 (3)以KVL寫出各迴路的電壓方程式。 迴路a:(3+5+2)Ia+2Ib=22+12 整理得:10Ia+2Ib=34 ………… 迴路b:有一電流源,故Ib=2A ………… (4)解方程式,求出各迴路電流 代入 得Ib=3A (5)求各元件的電流 I1= Ia=3A I2= Ia+Ib =3+2=5A I3= Ib=2A 4-34 Chapter4 基本電學I 直流迴路 4-3 重疊定律 有關重疊定律(superposition theorem)的定義、用途及解題步驟逐 一說明如下: 1.定義:在多電源線性電路中,任一支路元件的電壓或電流,等於個 別電源單獨作用時所產生的電壓或電流之代數和;也就是各 別計算,再合併彙整的電路運算技巧。 |2.用途:用於求解多電源的電路,可避免解繁雜的聯立方程式。 4-35 Chapter4 基本電學I 直流迴路 4-3 重疊定律 3.解題步驟: (1)保留一個電源,移除其他電源,移除後的處理原則如下: 移除的是電壓源時,將其兩端短路。 移除的是電流源時,將其兩端開路。 (2)以前述各種電路解法,求出待求元件的電壓或電流,並標示電壓 極性或電流方向。 (3)更換為另一電源,重覆步驟(1)、(2)。 (4)加總各電源單獨作用的值;依下列原則求其代數和: 電壓極性相同則相加,不同則相減。 電流方向相同則相加,不同則相減。 4.使用限制:重疊定理只能適用於線性關係的電壓及電流計算,並不 適用於非線性關係的功率計算。 4-36 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? 例4-7圖(1) 4-37 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? (1)保留15V電壓源,將5A電流源開路如下圖 例4-7圖(1) (2) 此時流過6電阻的電流 IV 4-38 15 1A 96 (向下) Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-7 重疊定律用於電壓源及電流源電路 如右圖所示,試求流過6歐姆電阻的電流為何? (3)保留5A電流源,將15V電壓源短路如下圖 例4-7圖(1) (4)此時流過6電阻的電流 I A 5 9 3A 96 (向下) (5)求總和:由於此處電流方向均為向下,其代數和直接相加即可。 I IV I A 1 3 4A (向下) 4-39 Chapter4 基本電學I 直流迴路 4-3 重疊定律 5.本例中,試求流過9歐姆電阻的電流為何? 4-40 Chapter4 基本電學I 直流迴路 4-3 重疊定律 5.本例中,試求流過9歐姆電阻的電流為何? 保留15V電壓源時 IV 保留5A電流源時 IA 5 故I=Iv+Ia=1A(向左) 4-41 15 1A(向右) 96 6 2A(向左) 96 Chapter4 基本電學I 直流迴路 4-3 重疊定律 6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功 率為 瓦特。 例4-7圖(2) 4-42 Chapter4 基本電學I 直流迴路 4-3 重疊定律 6.如右圖(2)所示之電路,則流經5Ω 電阻之電流與其所消耗之功 率為 瓦特。 例4-7圖(2) 重疊定律:20V作用,10A開路,IV=4 A;10A作用,20V短路,IA=0 A 合併後,I= IV + IA =4 A,P= I2 × R= 42 × 5=80 W 4-43 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-8 重疊定律用於三電流源電路 如右圖所示,試求Ix及Vx之值為何? 例4-8圖 4-44 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-8 重疊定律用於三電流源電路 如右圖所示,試求Ix及Vx之值為何? (1)保留3A電流源 例4-8圖 此時Ix、Vx I x1 = 3´ 2 = 1.5A(向右) (1 + 1)+ 2 Vx1 = 3(3- I x1 )´ 2 = 3V+- = - 3V 註: V+- 表示上面。-,下面為正。 4-45 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-8 重疊定律用於三電流源電路 如右圖所示,試求Ix及Vx之值為何? (2)保留中間2A電流源 此時Ix、Vx I x 2 = 2´ 例4-8圖 2 = 1A(向右) (1+ 1)+ 2 Vx 2 = (2 - I x1 )´ 2 = 2V+- = - 2V (3)保留右邊2A電流源 此時Ix、Vx 2 = 0.5A(向右) (1+ 2)+ 1 Vx3 = I x3 ´ 2 = 1V+- = + 1V I x 3 = 2´ 4-46 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-8 重疊定律用於三電流源電路 如右圖所示,試求Ix及Vx之值為何? (4)求總和: I x I x1 I x 2 I x3 1.5 1 0.5 3A(向右) Vx Vx1 Vx 2 Vx3 (3) (2) 1 4V 4-47 例4-8圖 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? 例4-9圖 4-48 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? (1)保留5A電流源,電壓源短路 例4-9圖 I A 5 4-49 4 2A(向右下) 46 Chapter4 基本電學I 直流迴路 4-3 重疊定律 4-9 重疊定律應用 如右圖所示,試求流過6Ω電阻的電流為何? (2)保留10V電壓源 例4-9圖 IV 10 1A(向右下) 46 (3)求總和: I I A IV 2 1 3A(向右下) 4-50 Chapter4 基本電學I 直流迴路 4-3 重疊定律 7.本例中,試求流過1Ω的電阻的電流為多少? 4-51 Chapter4 基本電學I 直流迴路 4-3 重疊定律 7.本例中,試求流過1Ω的電阻的電流為多少? 保留5A電流源時 IA=5A 保留10V電壓源時 Iv=0 故I1Ω =IA+IV=5+0=5A 4-52 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 有關戴維寧定理(Thevenin's theorem) 說明如下: 1.定義:在複雜的線性網路中,針對某一元件(例如圖4-3中的RL)兩 端點看進去的電路,都可以化簡為一電壓源與一電阻串聯的 等效電路;其中電壓源ETh稱為此一複雜線性網路的戴維寧等 效電壓,電阻RTh則是其戴維寧等效電阻。。 2.用途:戴維寧定理是電路解析最常用的方法之一,可用來簡化電 路,尤其在求取負載最大功率時,更是不可缺少的一種方 法。 (a)複雜的原電路 4-53 (b)戴維寧等效電路 圖4-3 戴維寧定理說明圖 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 3.戴維寧定理解題步驟: (1)將待測電阻(如圖4-3中的RL)移開,形成開路並標示為a、b兩端。 (2)求ETh:也就是開路兩端的電位差,即ETh=Eab;其求法可使用分壓定 則、節點電壓法、重疊定理等方法求之。 (3)求RTh:也就是開路兩端看進去的等效電阻,即RTh=Rab;計算之前必 須先將所有電壓源短路,電流源開路。 (4)將ETh、RTh填入戴維寧等效電路,並將移去的待測電阻RL接回a、b兩 端如圖4-3(b)所示。 (5)以歐姆定律求其電壓或電流。 4-54 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 10 戴維寧電路基本運算 試求下圖(a)電路中a、b兩端的戴維寧等效電路。 (a) (b) 例4-10圖(1) 4-55 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 10 戴維寧電路基本運算 (1)求ETh:即Vab,因為a、b兩端開路,10Ω電阻沒有電流流過,不 產生壓降,因此Vab實際上是求3Ω兩端電壓;依分壓定則得: ETh Vab V3 12 3 4V 63 (2)求RTh:將電壓源短路後,a、b兩端的等效電阻。 RTh=(6 // 3 )+10=2+10=12Ω (3)將ETh、RTh值填入圖(1)(b)的戴維寧等效電路即可。 4-56 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 8.本例題中,當ab兩端接一8Ω負載,則負載電流為 4-57 A。 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 8.本例題中,當ab兩端接一8Ω負載,則負載電流為 I L = 2´ 4-58 ETH 4 = = 0.2A RTH + RL 12 + 8 0.2 A。 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh= V,RTh= Ω I L= A。 例4-10圖(2) 4-59 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 9.試求右圖(2)電路中之5Ω電阻的戴維寧等 效電路:ETh= V,RTh= Ω I L= A。 例4-10圖(2) (1)5Ω電阻移開,兩端的電壓為ETh=53=15 V (2) 5A電流源開路,5Ω電阻看進去的電阻為RTh=2+3=5 Ω (3) 5Ω電阻接回去, 4-60 IL = ETH 15 = = 1.5A RTH + RL 5+ 5 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 11 配合重疊定理的戴維寧電路(一) 試求下圖(a)電路中a、b兩端的戴維寧等效電路。 (a) (b) 例4-11圖 4-61 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 11 配合重疊定理的戴維寧電路(一) (1)求ETh:以重疊定理求之。 電壓源短路時 Vab1 V6 9 6 54V 電流源開路時 Vab 2 Vcb 9V 重疊得ETH=Vab1+Vab2=54+9=63V 4-62 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 11 配合重疊定理的戴維寧電路(一) (2)求RTh:將電壓源短路後,電流源開路,求a、b兩端的等效電阻 RTh= Rab=12+6=18Ω (3)將ETH 、RTh值填入圖(b)的戴維寧等效電路即可。 4-63 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 12 配合重疊定理的戴維寧電路(二) 試求下圖(a)電路中RL兩端的戴維寧等效電路。 (b) (a) 例4-12圖 4-64 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 12 配合重疊定理的戴維寧電路(二) (1)求ETh:以重疊定理求之。 電壓源短路時 Vab1 Vcb 25V 電流源開路時 Vab2 Vcb 5 3 15V 重疊得ETH=Vab1+Vab2=25+15=40V 4-65 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 12 配合重疊定理的戴維寧電路(二) (2)求RTh:將電壓源短路、電流源開路如下圖。 RTh= Rab=5+3=8Ω 4-66 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 11.試將本題中兩電源位置互換,則求得的RTh= ETh= V,RL=4Ω時,流過RL的電流為 4-67 Ω, A。 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 11.試將本題中兩電源位置互換,則求得的RTh= 6 ETh= 30 V,RL=4Ω時,流過RL的電流為 3 (1)求ETh:以重疊定理求之。 電壓源短路時 電流源開路時 改圖 Vab1 Vcb 25V Vab2=51=5 V 重疊得ETH=Vab1+Vab2=25+5=30V 4-68 Ω, A。 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 11.試將本題中兩電源位置互換,則求得的RTh= 6 ETh= 30 V,RL=4Ω時,流過RL的電流為 3 (2)求RTh:將電壓源短路、電流源開路如下圖。 改圖 RTh= Rab=5+1=6Ω E 30 TH = = 3A (3)求IL:= R + RL 6+ 4 TH 4-69 Ω, A。 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 13 戴維寧定理用於菱形電路 如下圖(a)所示,試求(1)9Ω兩端的戴維寧等效電路,(2)流過9Ω的電流。 (b) (a) 例4-13圖 4-70 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 4 - 13 戴維寧定理用於菱形電路 (1)求ETh:將9Ω電阻移開,重畫電路如下圖: ETh Vab Va Vb (18 6 2 ) (18 ) 63 22 12 9 3V (2)求RTh:將電壓源短路後,求a、b兩端的等效電阻。 RTh Rab 63 2 2 63 22 3 (3)將ETh 、 RTh值填入戴維寧等效電路 4-71 I ETh 3 0.25A RTh RL 3 9 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh = V,I= A。 4-72 Chapter4 基本電學I 直流迴路 4-4 戴維寧定理 12.本例中,將右下角的2Ω電阻值換成4Ω,9Ω換成12Ω,則 ETh = 0 V,I= 0 A。 34=26,變成平衡電橋 (1)求ETh:將9Ω電阻移開,重畫電路如下圖: ETh Vab Va Vb 18 =0V (2)求I:因為兩端電壓為0,故 I=0 A 4-73 6 4 18 63 42 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4-5.1 最大功率轉移的意義 從3-5節得知:電壓源有一串聯內電阻,電流源有一並 聯內電阻;而且理想電壓源內阻為0,理想電流源內阻為∞。 以理想電壓源為例,當接上負載時,電壓源所供給的功率將 全部轉移到負載上如圖4-4(a),也就是說其傳輸效率為100%。 (a)理想電壓源的功率傳輸 (b)一般電源的功率傳輸 圖4-4 電壓源電路 4-74 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4-5.1 最大功率轉移的意義 一般電源均有內阻存在如圖4-4(b),當接上負載時,電源 所供給的功率,有一部分消耗在內阻,而無法全部轉移到負 載上,因此其傳輸效率將會小於1;因為負載的變化,會影響 線路電流,使負載功率跟著改變。如何適當地改變負載電阻, 以便獲得最大的功率轉移,就是本節要加以探討的課題。 4-75 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4-5.2 最大功率轉移的條件與結果 以圖4-4(b)為例,說明改變負載電阻RL,對負載功率改變 的情形,如下:(註:RL=0表示負載短路,RL=∞表示負載開 路) 1.當RL=0時,線路電流 2.當RL=∞時,線路電流 I IL 3.當RL為任一值時, E PL I RL R RL 2 L 4-76 E2 R2 2 R RL RL E R0 IL L E R RL 值最大,負載功率 PL I L2 RL 0 。 E R ≒ 0,負載功率 ,則 2 E2 RL 2 2 R 2 RRL RL E2 R2 2 R RL 4 R RL RL E2 ( R RL )2 4 R RL PL I L2 RL 0。 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4-5.2 最大功率轉移的條件與結果 以觀察上式,發現當時,PL為最大,也就是說: 當RL=R時,負載RL可以獲得最大輸出功率Pmax,此時最大輸出 功率Pmax為: 4-77 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4-5.2 最大功率轉移的條件與結果 將這種觀念應用在複雜的電路時,只要將該複雜電路先 轉換成戴維寧等效電路,將其RTh視為內阻R即可;換言之, 複雜電路的負載輸出最大功率,發生在「負載電阻RL」= 「戴維寧等效電阻RTh」時。 在負載獲得最大輸出功率的同時,其內阻也獲得相同的 功率消耗,而這個功率是一種損失,亦即負載功率(P0)= 內阻損失功率( P );因此,當負載獲得最大輸出功率時,其 P P 傳輸效率 P0 P 0 P 0.5 ,意即只有50% 。 i 4-78 0 i Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4 - 14 最 大 功 率 基 本 運 算 如右圖所示,試求 (1) RL等於多少歐姆時可得 最大功率,(2)最大功率為多少瓦特? 例4-14圖 4-79 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4 - 14 最 大 功 率 基 本 運 算 如右圖所示,試求 (1) RL等於多少歐姆時可得 最大功率,(2)最大功率為多少瓦特? (1)RL=R=2Ω時,可得最大功率。 (2)最大功率 Pmax E 2 162 32W 4R 4 2 例4-14圖 4-80 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4 - 15 配合戴維寧定理的最大功率計算 如圖所示電路,試求 (1)負載電阻RL為多少時 可獲得最大功率?(2)最大功率為多少瓦特? 例4-15圖 4-81 Chapter4 基本電學I 直流迴路 4-5 最大功率轉移定理 4 - 15 配合戴維寧定理的最大功率計算 如圖所示電路,試求 (1)負載電阻RL為多少時 可獲得最大功率?(2)最大功率為多少瓦特? 例4-15圖 (1) 將RL移開,並標示為a、b兩端,求其戴維寧等效電路。 求 RTh :將電壓源短路後,求a、b兩端的等效電阻。 RTh = Rab=6 // 3=2Ω, 故負載電阻RL 應為2Ω才能獲得最大功率。 求ETh:ETh為3Ω兩端的電壓,即 3 = 8V 3+ 6 2 ETh 82 (2)最大功率 Pmax = = = 8W 4 RTh 4´ 2 ETh = 24´ 4-82 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 1.定義:在複雜的線性網路中,任意兩端點看進去的電路,均可以化 簡為一電流源並聯一電阻的等效電路,如圖4-5所示。其中電 流源IN又稱為諾頓等效電流,電阻RN又稱為諾頓等效電阻。 2.用途:是電路解析常用的方法,可用來化簡電路。 (a)複雜的原電路 (b)諾頓等效電路 圖4-5 諾頓定理說明圖 4-83 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 3.解題步驟: (1)電將待測電阻(如圖4-6的RL)移開,並標示為a、b兩端。 (2)求RN:和戴維寧等效電阻RTh的求法相同;也就是開路兩端看進 去的等效電阻,但是必須先將所有電壓源短路,電流源 開路。 (3)求IN:首先必須將a、b兩端短路,求a流向b的電流。其求法可 使用分流定則、節點電壓法、重疊定理等方法求之。 (4)將IN、RN填入諾頓等效電路,並將移去的待測電阻RL接回a、b 兩端如圖4-5(b)所示。以分流定則求之,如下: 4-84 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 例4-16圖 4-85 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 (1)將待測電阻(4Ω)移開,並標示為a、b兩端 (2)求RN:將所有電壓源短路如右圖。 RN=3//6=2Ω 4-86 例4-16圖 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 (3)求IN:將a、b兩端短路,以重疊定理 求流經短路處的電流。 例4-16圖 I N1 15 5A 3 代數和:IN=IN1+IN2=5+3=8A 4-87 IN2 18 3A 6 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 16 配合重疊定理的諾頓電路(一) 如右圖電路中,試以諾頓定理求流經4Ω的電流。 (4)畫出諾頓等效電路如右圖。 以分流定則求其電流: I = 8´ 2 = 2.67A 2+ 4 例4-16圖 4-88 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 13.本試以戴維寧定理重做此題求其ETh= RTh= Ω,I= A。 4-89 V, Chapter4 基本電學I 直流迴路 4-6 諾頓定理 13.本試以戴維寧定理重做此題求其ETh= RTh= 2 Ω,I= 2.67 A。 16 V, (1)將待測電阻(4Ω)移開,並標示為a、b兩端 (2)求RN:將所有電壓源短路如右圖。 RN=3//6=2Ω (3)求ETh:將a、b兩端短路,以重疊定理求開路處壓。 ETh1 = V6W = 15´ 6 3 = 10V ETh 2 = V3W = 18´ = 6V 6+ 3 6+ 3 代數和:ETh=ETh1+ETh2=10+6=16A 4-90 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 13.本試以戴維寧定理重做此題求其ETh= RTh= 2 Ω,I= 2.67 A。 (4)畫出諾頓等效電路如右圖。 以歐姆定理求其電流: IL = 4-91 ETh 16 = = 2.67A RTh + RL 2+ 4 16 V, Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 17 配合重疊定理的諾頓電路(二) 如圖(a)電路中,試以諾頓定理求流經2Ω的電流。 (a) (b) 例4-17圖 4-92 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 17 配合重疊定理的諾頓電路(二) (1)將待測電阻(2Ω)移開,並標示為a、b兩端 (2)求RN:將所有電流源開路如圖(b)。。 RN=6//12=4Ω (3)求IN:將a、b兩端短路,以重疊定理求流經短路處的電流。 IN1=3A 代數和:IN=IN1+IN2=3+6=9A 4-93 IN2=6A Chapter4 基本電學I 直流迴路 4-6 諾頓定理 4 - 17 配合重疊定理的諾頓電路(二) (4)畫出諾頓等效電路如右圖。 以分流定則求其電流: I = 9´ 4-94 4 = 6A 4+ 2 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 14.根據本例,試求流經6Ω及12Ω的電流各為多少? 4-95 Chapter4 基本電學I 直流迴路 4-6 諾頓定理 14.根據本例,試求流經6Ω及12Ω的電流各為多少? (1) 4-96 2 12 I 6 9 2 12 2A 2 12 6 2 12 (2) 12 I12 9 8 1A 12 12 8 Chapter4 基本電學I 直流迴路 4-7 戴維寧與諾頓等效電路之轉換 綜合前述各節得知:在複雜的線性網路中,任意兩端點看進去的 電路,均可以化簡為電壓源模式的戴維寧等效電路,或電流源模式的 諾頓等效電路,如圖4-6所示。 圖4-6 戴維寧與諾頓的轉換 4-97 Chapter4 直流迴路 基本電學I 4-7 戴維寧與諾頓等效電路之轉換 圖4-6兩者均源自同一原始電路,表示兩者互為等值電路,也就 是說戴維寧電路和諾頓電路是可以互相轉換的,其轉換方法和「電壓 源與電流源的轉換方法」一樣,如下: 1.戴維寧等效電路 轉換為 諾頓等效電路 2.諾頓等效電路 轉換為 戴維寧等效電路 4-98 Chapter4 基本電學I 直流迴路 4-7 戴維寧與諾頓等效電路之轉換 4 - 18 戴維寧電路與諾頓電路轉換應用 如右圖所示,試求其RL之戴維寧等效電路ETh、RTh ,及諾頓等效電路IN、RN。 例4-18圖 4-99 Chapter4 基本電學I 直流迴路 4-7 戴維寧與諾頓等效電路之轉換 4 - 18 戴維寧電路與諾頓電路轉換應用 如右圖所示,試求其RL之戴維寧等效電路ETh、RTh ,及諾頓等效電路IN、RN。 本題先求戴維寧等效電路,再轉換成諾頓等效電 路即可。 (1)戴維寧等效電壓ETh: ETh Vab V3 60 3 20V 63 (2)戴維寧等效電阻RTh:將電壓源短路後,a、b 兩端的等效電阻。 RTh = (6//3) +8 = 2 +8 =10Ω 20 2A (3)諾頓等效電流 I ER 10 (4)諾頓等效電阻 RN = RTh = 10Ω (5)如右圖所示。 Th N Th 4-100 例4-18圖 Chapter4 基本電學I 直流迴路 4-7 戴維寧與諾頓等效電路之轉換 4 - 19 諾頓電路轉換戴維寧電路基本運算 如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 (1) (2) 4-101 Chapter4 基本電學I 直流迴路 4-7 戴維寧與諾頓等效電路之轉換 4 - 19 諾頓電路轉換戴維寧電路基本運算 如下圖所示,將諾頓等效電路轉換為戴維寧等效電路。 (1) (2) 4-102 RTh = RN = 5Ω ETh = IN‧RN =3×5=15V (注意極性) RTh = RN = 6Ω ETh = IN‧RN =5×6=30V (注意極性) 基本電學I 教材 名師教學示範 例題4-1 節點電壓法用於電壓源及電流源 例題4-10 戴維寧電路基本運算 例題4-2 節點電壓法應用於多節點電路 例題4-11 配合重疊定理的戴維寧電路(一) 例題4-3 節點電壓法用於交叉電源電路 例題4-12 配合重疊定理的戴維寧電路(二) 例題4-4 節點電壓法用於兩個電流源電路 例題4-13 戴維寧定理用於菱形電路 例題4-5 迴路電流法用於兩電壓源電路 例題4-14 最大功率基本運算 例題4-6 迴路電流法用於電壓源及電流源電路 例題4-15 配合戴維寧定理的最大功率計算 例題4-7 重疊定律用於電壓源及電流源電路 例題4-16 配合重疊定理的諾頓電路(一) 例題4-8 重疊定律用於三電流源電路 例題4-17 配合重疊定理的諾頓電路(二) 例題4-9 重疊定律應用 例題4-18 戴維寧電路與諾頓電路轉換應用 基本電學I 教材 名師教學示範 例題4-19 諾頓電路轉換為戴維寧電路基本運算