PowerPoint-Präsentation

Download Report

Transcript PowerPoint-Präsentation

L3: Lehrer lernen von Lehrern
Ideen aus SINUS mit Begeisterung im
Unterricht umsetzen
Sibylle Knötzinger
Anton-Rauch-Realschule Wertingen
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
Leitideen aus SINUS bzw. SINUS-Transfer
 SINUS:
Steigerung der Effizienz des
mathematisch-naturwissenschaftlichen Unterrichts
 Modellversuch 1998 – 2003
 SINUS-Transfer ab 2003/2004
 Lernen:
Aktiver, konstruktiver, kumulativer und zielorientierter Prozeß
Kein einseitiger Wissenstransport vom Lehrer zum Schüler
Lehrer ermöglichen ihren Schülern eigenständige Zugänge zum
Wissen
Leitideen aus SINUS bzw. SINUS-Transfer
Leitideen – Unterricht überdenken
1.
Unterrichtsstil
Anregungen und Hilfe zur Selbsthilfe
Variation der Unterrichtsformen und – methoden
2.
Arbeiten mit Aufgaben
Aufgaben öffnen
Lösungsstrategien herausarbeiten
Unterschiedliche Lösungswege finden und dann auch gehen
3.
Fachliche Inhalte
Entdecken und Herausarbeiten inhaltlicher und struktureller
Zusammenhänge
Begeisterung für Mathematik!
Quelle: www.sinus-transfer.de
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
(nach einem Vortrag von Prof. Regina Bruder)
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
Problemlösestrategien - Einstieg
Was man alles mit einem Blatt Papier machen kann ......
etwas
abdecken
anzünden
sich Luft
zufächeln
Blatt Papier
einen
Flieger
basteln
etwas
ausstopfen
einen Brief
schreiben
etwas
aufschreiben
ein
Geschenk
einpacken
Problemlösestrategien - Einstieg
Was man alles mit einem Mauerstein machen kann .......
Strategie: Was weiß ich über einen Mauerstein?
Welche Eigenschaften hat er?
Was kann ich daraus ableiten?
etwas beschweren
Gewicht
etwas versenken
Türstopper
eine Mauer errichten
Form
sich draufstellen
etwas damit abdecken
zermahlen
Material
zum Wärmen verwenden
etwas beschriften
Tipps zum Problemlösen
Strategien und Hilfsmittel helfen, eine Aufgabe zu lösen.
Strategien:
Vorwärtsarbeiten
Rückwärtsarbeiten
Was ist gegeben?
Was ist gesucht?
Heuristische
Hilfsmittel
Informative Figur
Was weiß ich über das
Gegebene?
Was weiß ich über das
Gesuchte?
Was kann ich daraus
ermitteln?
Was benötige ich, um das
Gesuchte zu ermitteln?
Tabelle
Gleichung
Problemlösestrategien - Vorwärtsarbeiten
Quelle: http://www.informatik.uni-mainz.de/lehre/fachdidaktik/Dateien/Aufgaben_SekundarstufeII.pdf
Problemlösestrategien - Rückwärtsarbeiten
Ein Mann geht Äpfel pflücken. Um in die Stadt
zu kommen, muss er 7 Tore passieren. An
jedem Tor steht eine Wächterin und verlangt
von ihm die Hälfte seiner Äpfel und einen
Apfel mehr. Am Schluss bleibt dem Mann
nur ein Apfel übrig.
Wie viele hatte er am Anfang?
Quelle: http://www.informatik.uni-mainz.de/lehre/fachdidaktik/Dateien/Aufgaben_Orientierungsstufe.pdf
Problemlösestrategien – Informative Figur
Quelle: Fortbildung SINUS Transfer, Autor unbekannt
Problemlösestrategien – Vorwärtsaufgabe
Der Lügendetektiv
Mit einem so flauen Gefühl, wie er sie nie zuvor verspürt hatte, betrat der Anthropologe
Abercrombie die Insel der Ritter und Schurken. Er wusste, dass diese Insel von höchst
erstaunlichen Menschen bevölkert wurde: Die Ritter machten immer nur wahre Aussagen,
die Schurken stets falsche. „Wie“, fragte sich Abercrombie, „kann ich jemals etwas über
diese Insel erfahren, wenn ich nicht weiß, wer lügt und wer die Wahrheit sagt?
Abercrombie wusste, dass er, bevor er überhaupt etwas in Erfahrung bringen konnte, einen
Freund finden musste, jemanden, dessen Aussagen er immer vertrauen konnte. Deshalb
dachte er sich, als er die ersten drei Inselbewohner traf: „Das ist die Chance, einen Ritter
für mich zu finden!“ Die drei Bewohner hießen Arthur, Bernhard und Charles.
Abercrombie fragte zunächst Arthur: „Sind Bernard und Charles beide Ritter?“
Arthur antwortete: „Ja!“
Arthur fragte dann: „Ist Bernard ein Ritter?“
Zu seiner großen Überraschung antwortete Arthur nun mit „Nein“.
Ist Charles ein Ritter oder ein Schurke?
Lösung: Charles ist ein Schurke
Quelle: http://www.informatik.uni-mainz.de/lehre/fachdidaktik/Dateien/Aufgaben_SekundarstufeII.pdf
Problemlösestrategien – Vorwärtsaufgabe
Problemlösestrategien – Vorwärtsaufgabe
Aufgabe
Ein Windsack zeigt genau nach Nordosten. Er macht zuerst eine
Halbdrehung, dann dreht er sich um 45° weiter, dann dreht er sich nochmals
um 75% einer Volldrehung. Anschließend dreht er sich zuerst um 270°, dann
noch um 180°.
Aus welcher Richtung kommt jetzt der Wind?
(Hinweis: Es gilt auch hier die mathematische Drehrichtung)
Lösung:
Ausgangssituation: NO
SW
S
N
W
S
Da der Windsack nach Süden zeigt, weht ein Wind aus Norden.
Problemlösestrategien – Rückwärtsaufgabe
Aufgabe
Der Hund Waldi ging mit seinem Herrchen einkaufen. Auf dem Weg nach
Hause war er so hungrig, dass er an jeder der sechs Straßenecken die Hälfte
seiner Hundekekse und einen mehr aufgefressen hat. Zuhause war nur noch
ein Keks übrig. Wie viele Kekse hatte sein Herrchen gekauft?
Lösung:
Zuhause: 1 Keks übrig
An der 6. Straßenecke waren zunächst noch 4 Kekse in der Packung.
An der 5. Straßenecke waren zunächst noch 10 Kekse in der Packung.
An der 4. Straßenecke waren zunächst noch 22 Kekse in der Packung.
An der 3. Straßenecke: zunächst noch 46 Kekse
An der 2. Straßenecke: zunächst noch 94 Kekse
An der 1.Straßenecke: zunächst noch 190 Kekse
Antwort: Es waren 190 Kekse in der Packung.
Quelle: Fortbildung SINUS Transfer, Autor unbekannt
Problemlösestrategien – Rückwärtsaufgabe
Aufgabe:
Martina nimmt die Hälfte der Gummibärchen aus einer Tüte und behält sie für
sich. Dann gibt sie Max zwei Drittel der Gummibärchen, die noch in der Tüte
waren. Jetzt sind in der Tüte
noch sechs Gummibärchen. Wie viele
Gummibärchen waren am Anfang in der Tüte.
Lösung:
Max erhält 12 Gummibärchen. Martina hatte anfangs 36 Gummibärchen in ihrer Tüte.
Problemlösestrategien – Rückwärtsaufgabe
Lösung: Der Junge wiegt gleich viel wie sechs Katzen oder drei Säcke.
Quelle: Aufgaben Probeunterricht, Autor unbekannt
Problemlösestrategien – Gleichung
Aufgabe:
In jeder von fünf Kisten befindet sich genau die gleiche Anzahl von Aprikosen.
Entnimmt man jeder Kiste 60 Aprikosen, bleiben in den Kisten insgesamt soviel
Aprikosen übrig, wie vorher in zwei Kisten waren. Wie viele Aprikosen waren
vorher insgesamt in den Kisten?
Lösung:
Mit Hilfe einer Gleichung:
5(x – 60) = 2x
In jeder Kiste waren vorher 100 Aprikosen, also insgesamt waren 500 Aprikosen in den
Kisten.
Quelle: Fortbildung SINUS Transfer, Autor unbekannt
Problemlösestrategien – Gleichung
Aufgabe:
Lukas spielt in einer Fußballmannschaft. Nach der Tabellenrunde verkündet der
Trainer den Torestand: Lukas hat viermal so viele Tore geschossen wie
Michael. Özdem hat drei Tore mehr erzielt als Michael. Insgesamt haben die
drei Torschützen für ihre Mannschaft 33 Tore geschossen.
Lösung:
Mit Hilfe einer Gleichung:
x + 4x + (x + 3) = 33
Michael hat fünf Tore geschossen, Lukas zwanzig und Özdem sieben.
Problemlösestrategien – Informative Figur
Aufgabe:
Der Koch eines Zeltlager braucht für die Soße, die er kochen möchte, genau 6 Liter
Wasser. Er hat außer seinem großen Topf für die Soße nur einen 4-Liter-Eimer und einen
9-Liter-Eimer ohne Markierungen zur Verfügung. Wie muss er vorgehen, damit er genau
6 Liter Wasser abmessen kann?
Lösung:
Der 9-l-Eimer wird befüllt. Anschließend wird mit dieser Menge nacheinander zweimal der 4-L-Eimer
befüllt. Es bleibt 1 l im 9-l-Eimer zurück, dieser kann in den Topf gegossen werden.
9l
4l
4l
1l
Anschließend wird der 9-l-Eimer nochmal befüllt. Das Wasser wird dann in den 4-l-Eimer gegossen.
Zurück bleiben 5 Liter, die dann in den Topf gegossen werden können.
9l
4l
5l
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
Aufgabe zu quadratischen Funktionen
Einstieg:
Video „Jahrhundertsprung“ von Bob Beamon bei
den Olympischen Spielen 1968 in Mexiko City
http://www.youtube.com/watch?v=DEt_Xgg8dzc
Aufgabe zu quadratischen Funktionen
Weltbestenliste Weitsprung Männer
Alle Springer mit einer Leistung von 8,66 Metern oder weiter.
In Klammern: Wind in m/s. A: Weite wurde unter Höhenbedingungen erzielt.
Letzte Veränderung: 5. Oktober 2009
1.
8,95 m (0,3) Mike Powell, USA, Tokio, 30. August 1991
2.
8,90 m A (2,0) Bob Beamon, USA, Mexiko-Stadt, 18. Oktober 1968
3.
8,87 m (- 0,2) Carl Lewis, USA, Tokio, 30. August 1991
4.
8,86 m A (1,9) Robert Emmijan, URS, Zachkadsor, Armenien, 22. Mai 1987
5.
8,74 m (1,4) Larry Myricks, USA, Indianapolis, 18. Juli 1988
6.
8,74 m A (2,0) Erick Walder, USA, El Paso, 2. April 1994
7.
8,74 m (- 1,2) Dwight Phillips, USA, Eugene, 7. Juni 2009
8.
8,73 m (1,2) Irving Saladino, PAN, Hengelo, 24. Mai 2008
9.
8,71 m (1,9) Iván Pedroso, CUB, Salamanca, 18. Juli 1995
10.
8,66 m (1,6) Louis Tsatoumas, GRE, Kalamata, 2. Juni 2007
Quelle: http://de.wikipedia.org/wiki/Weitsprung#Anlauf
Aufgabe zu quadratischen Funktionen
Bob Beamon sprang bei seinem Weltrekord bei den
Olympischen Spielen 1968 in Mexiko-City 8,90 m weit.
Sein Körperschwerpunkt legte dabei in etwa die Bahn
einer Parabel zurück, die angenähert durch die Gleichung
y = -0,0571x2 + 0,3838x + 1,14 beschrieben wird
(y gibt die jeweilige Höhe des Körperschwerpunktes über
der Sprunggrube (in m) und x die horizontale Entfernung
von der Ausgangslage beim Absprung (in m) an.
Könnte Bob Beamon mit diesem Weltrekord einen VW Golf
überspringen?
Quelle: http://www.mathematik.uni-kassel.de/didaktik/sinus/
Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 1):
Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 2):
Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 3):
Aufgabe zu quadratischen Funktionen
Lösungsansatz (Blatt 4): Laufsprung
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
8. Klasse: Dreiecke
Erarbeitung der Seiten-Winkel-Beziehung und der Dreiecksungleichung
Auftrag 1:
1.
Schreibe alles auf, was du über Seiten, Winkel
(auch Außenwinkel) ... von Dreiecken weißt.
2.
In normalen Dreiecken sind die drei Seiten
verschieden lang und die drei Winkel
verschieden groß. In besonderen Dreiecken
sind manche Seiten oder Winkel gleich, es
treten 90°- Winkel auf oder die Dreiecke sind
symmetrisch.
Zeichne besondere Dreiecke!
3.
Zeichne 4 unterschiedliche Dreiecke und miss
die Seiten und Winkel deiner Dreiecke.
Trage die Messergebnisse in unten stehende
Tabelle ein!
4.
Überlege dir Maße von 2 Dreiecken, die die
Dreiecksungleichung nicht erfüllen und
versuche, diese Dreiecke zu zeichnen!
Überlege dir ebenso Maße von 2 Dreiecken, die
die Seite-Winkel-Beziehung nicht erfüllen und
versuche diese Dreiecke zu zeichnen!
Quelle: Idee von Franz Anneser, Herzog-Tassilo-Realschule, Dingolfing
8. Klasse: Dreiecke
Erarbeitung der Kongruenzsätze
Auftrag 2: Landesvermessung
Nach dem Vorbild des holländischen
Mathematikers Snellius (1580 – 1626) wird das
zu vermessende Gebiet mit einem Netz von
Dreiecken überzogen, deren Eckpunkte
markante, weithin sichtbaren Punkte sind.
1.
Übertrage das Dreieck Peissenberg – Wendelstein
– München in Dein Heft. Zeichne im
Maßstab 2 : 1.
2.
Markiere auf unkariertem Papier 3 Punkte und
verbinde sie.
Jetzt sollst Du das Dreieck vermessen und ein
identisches Abbild dieses Dreieckes herstellen.
Der berühmte Mathematiker Gauß führte die
Vermessung des Königreiches Hannover durch.
Welche Messungen sind unbedingt durchzuführen?
Unten stehendes Bild zeigt einen Ausschnitt aus
dem Netz der Vermessung Bayerns.
Versuche dieses identische Dreieck mit möglichst
wenig Messaufwand herzustellen!
Finde unterschiedliche Methoden!
3.
Aus: Mathematik für
Realschulen,
Diesterweg, S.105
Gestalte farbige Muster aus Dreiecken. Verwende
nur gleiche Dreiecke!
Quelle: Idee von Franz Anneser, Herzog-Tassilo-Realschule, Dingolfing
Ideen aus SINUS mit Begeisterung
im Unterricht umsetzen
Leitideen aus SINUS bzw. SINUS-Transfer
Umsetzung im Unterricht:
 Problemlösestrategien
 Hausaufgabenfolie
 Aufgabe zu quadratischen Funktionen
 Unterrichtseinheit: Dreiecke
 Unterrichtseinheit: Reelle Zahlen
Reelle Zahlen
Dialog zwischen Sokrates und dem Sklaven Menon
In seinem Dialog „Menon“ lässt der Philosoph Platon als Lehrer den berühmten
Sokrates und als seinen Schüler den Sklaven Menon auftreten.
Versetze dich in die Lage des Sklaven Menon und versuche, das Problem zu
lösen.
Zeichne den Gedankengang mit einer Skizze nach. Kommst du alleine nicht weiter,
darfst du dir Hilfekarten holen (Hilfekarte 1, Hilfekarte 2)
Sokrates:
(zum Sklaven) Sage, siehst du dieser viereckigen Fläche an, dass sie ein Quadrat ist?
Menon:
Ja.
Sokrates :
Nehmen wir einmal an, die eine Seite ist zwei Fuß lang und die andere Seite ebenfalls.
Bild: Sokrates
Wie viel Quadratfuß wäre der Flächeninhalt?
Menon:
Vier, mein Sokrates.
Sokrates:
Ließe sich nun nicht ein zweites, doppelt so großes Quadrat herstellen?
Menon:
Ja.
Sokrates:
Wie viel Quadratfuß wird es also enthalten?
Menon:
Acht.
Sokrates:
Wohlan denn, hier haben wir unser Problem: Versuche mir dieses Quadrat zu zeichnen.
2
2
Die Seite unseres Quadrates hier ist zwei Fuß lang; wie lang wird also nun die Seite des doppelten sein?
Menon:
Offenbar doppelt so lang.
Quelle: http://www.mathematik.uni-kassel.de/didaktik/sinus/
Reelle Zahlen
Sokrates:
Wie groß ist der Flächeninhalt dieses Quadrats? Nicht viermal so groß?
Menon:
Du hast Recht.
Sokrates:
Denn viermal vier ist sechzehn. Nicht wahr?
Menon:
Ja.
Sokrates:
Es muss also doch die Seite des Quadrats mit Flächeninhalt 8 Quadratfuß größer sein als zwei Fuß und
kleiner aber als vier Fuß?
Menon:
Notwendigerweise.
Sokrates:
Versuche also zu sagen, wie lang sie nach deiner Meinung sein muss.
Menon:
Drei Fuß lang.
Sokrates:
Wenn es nun auf dieser Seite drei Fuß lang ist und auf dieser auch, so muss die ganze Fläche doch neun
Quadratfuß sein.
Menon:
Offenbar.
Sokrates:
Also auch dieses Quadrat ist nicht das gesuchte.
Menon:
Aber beim Zeus, mein Sokrates, ich weiß es nicht.
Sokrates:
Nehmen wir noch einmal unserer Quadrat mit Flächeninhalt sechzehn Quadratfuß.
Dieses Quadrat können wir in vier gleich große Quadrate mit dem Flächeninhalt vier Quadratfuß einteilen.
Menon:
Ja.
... Versuche vorerst das Problem selbständig zu lösen. Benutze Hilfekarte 1 erst,
wenn du nicht mehr weiter weißt.
Quelle: http://www.mathematik.uni-kassel.de/didaktik/sinus/
Reelle Zahlen
Hilfekarte 1:
Sokrates:
Das gesuchte Quadrat soll aber nur den Flächeninhalt acht Quadratfuß haben.
Menon:
Ja, gewiss.
Sokrates:
Lässt sich nicht jedes der vier Quadrate in zwei gleichgroße Hälften teilen?
Menon:
Ja.
Sokrates:
Es ließen sich doch vier gleich lange Diagonalen so ziehen, dass sie ihrerseits wieder ein Quadrat ergeben?
Menon:
So ist es.
Sokrates:
Überlege also: Wie groß ist der Flächeninhalt dieses Quadrat?
... Stelle vorerst eigene Überlegungen an. Danach darfst du Hilfekarte 2
heranziehen.
Quelle: http://www.mathematik.uni-kassel.de/didaktik/sinus/
Reelle Zahlen
Hilfekarte 2:
Menon:
Ich kann nicht darauf kommen.
Sokrates:
Jedes Quadrat mit Flächeninhalt vier Quadratfuß wird durch die Diagonale halbiert.
Menon:
Gewiss.
Sokrates:
Wie viele solcher Hälften sind nun in dem neuen Quadrat enthalten?
Menon:
Vier.
Sokrates:
Wie groß ist dann der Flächeninhalt des neuen Quadrats?
Menon:
Acht Quadratfuß
Sokrates:
Ist dies aber der Fall, so muss die Diagonale die Seite des gesuchten Quadrats bilden.
Menon:
Ohne Zweifel, Sokrates!
Quelle: http://www.mathematik.uni-kassel.de/didaktik/sinus/
Reelle Zahlen
Arbeitsblatt:
Reelle Zahlen
Quelle: Fortbildung SINUS
Reelle Zahlen
Quelle: Fortbildung SINUS
Reelle Zahlen
Quelle: Fortbildung SINUS