Transcript ppt
Double-Angle and Half-Angle
Formulas
Dr .Hayk Melikyan
Departmen of Mathematics and CS
[email protected]
H.Melikyan/1200
1
Double-Angle Identities
sin2 = 2 sin cos
cos2 = cos2 – sin2 = 1 – 2sin2 = 2cos2 – 1
tan 2 =
H.Melikyan/1200
2tan
1 tan 2
2
Three Forms of the Double-Angle Formula for cos2
cos 2 cos sin
2
2
cos 2 2 cos 1
2
cos 2 1 2 sin
2
H.Melikyan/1200
3
Power-Reducing Formulas
1 cos 2
sin
2
1 cos 2
2
cos
2
1 cos 2
2
tan
1 cos 2
2
H.Melikyan/1200
4
Example
Write an equivalent expression for sin4x that does not contain
powers of trigonometric functions greater than 1.
Solution
1 cos 2 x 1 cos 2 x
sin 4 x sin 2 x sin 2 x
2
2
1 cos 2 x
1 2 cos 2 x cos2 2 x 1 2 cos 2 x
2
4
4
2 4 cos 2 x 1 cos 2 x 3 3 cos 2 x
8
8
H.Melikyan/1200
5
Half-Angle Identities
x
sin 2 = ±
1 – cos x
2
x
cos 2 = ±
1 + cos x
2
x
tan 2 = ±
1 – cos x
sin x
1 – cos x
=
=
1 + cos x 1 + cos x
sin x
x
where the sign is determined by the quadrant in which 2 lies.
H.Melikyan/1200
6
Text Example
Find the exact value of cos 112.5°.
Solution
Because 112.5° 225°/2, we use the halfangle formula for cos /2
with 225°. What sign should we use when we apply the formula? Because
112.5° lies in quadrant II, where only the sine and cosecant are positive, cos
112.5° < 0. Thus, we use the sign in the halfangle formula.
225
cos112.5 cos
2
2
1
2
1 cos225
2
2
2 2
2 2
4
2
H.Melikyan/1200
7
Half-Angle Formulas for:
1 cos
t an
2
sin
sin
t an
2 1 cos
H.Melikyan/1200
8
Verifying a Trigonometric Identity
Verify the identity:
x
x
tan cot 2csc x
2
2
sin x
sin x
2csc x
1 cos x 1 cos x
sin x(1 cos x)
sin x(1 cos x)
2csc x
(1 cos x)(1 cos x) (1 cos x)(1 cos x)
2sin x
2csc x
2
1 cos x
2sin x
2csc x
2
sin x
1
2
2csc x
sin x
H.Melikyan/1200
9
The Half-Angle Formulas for Tangent
1 cos
tan
Quadrant I or III
1 cos
2
1 cos
tan
Quadrant II or IV
1 cos
2
1 cos
tan
in any quadrant
sin
2
sin
tan
in any quadrant
2 1 cos
H.Melikyan/1200
10
Example
Verify the following identity:
(sin cos )2 1 sin 2
Solution
(sin cos ) 2
sin 2 2 sin cos cos2
1 cos 2 1 cos 2
2 sin cos
2
2
2
2 sin cos 1 sin 2
2
H.Melikyan/1200
11
Product-to-Sum and Sum-to-Product Formulas
Product-to-Sum Formulas
1
sin sin cos( ) cos( )
2
1
cos cos cos( ) cos( )
2
1
sin cos sin( ) sin( )
2
1
cos sin sin( ) sin( )
2
H.Melikyan/1200
12
Example
Express the following product as a sum or difference:
cos 3x cos 2 x
Solution
1
cos cos cos( ) cos( )
2
cos3x cos 2 x
1
cos(3x 2 x) cos(3x 2 x)
2
1
cos(x) cos(5 x)
2
H.Melikyan/1200
13
Text Example
Express each of the following products as a sum or difference.
a. sin 8x sin 3x
b. sin 4x cos x
Solution
The product-to-sum formula that we are using is shown in each
of the voice balloons.
sin sin = 1/2 [cos( - ) - cos( + )]
a.
sin 8x sin 3x 1/2[cos (8x 3x) cos(8x 3x)] 1/2(cos 5x cos 11x)
b.
sin cos = 1/2[sin( + ) + sin( - )]
sin 4x cos x 1/2[sin (4x x) sin(4x x)] 1/2(sin 5x sin 3x)
H.Melikyan/1200
14
Evaluating the Product of a Trigonometric Expression
Determine the exact value of the expression
1
sin cos sin( ) sin( )
2
3
sin cos
8 8
1 3
3
sin sin
2 8 8
8 8
1
sin sin
2 2
4
1
1
1
2
2
2 1
1 2 1
2 2
2 2
H.Melikyan/1200
15
Sum-to-Product Formulas
sin sin 2 sin
cos
2
2
sin sin 2 sin
cos
2
2
cos cos 2 cos
cos
2
2
cos cos 2 sin
sin
2
2
H.Melikyan/1200
16
Example
Express the difference as a product:
sin 4 x sin 2 x
Solution
sin sin 2 sin
cos
2
2
4x 2x
4x 2x
sin 4 x sin 2 x 2 sin
cos
2
2
2x
6x
2 sin cos 2 sin x cos3x
2
2
H.Melikyan/1200
17
Example
Express the sum as a product:
sin x sin 4 x
Solution
sin sin 2 sin
cos
2
2
x 4x
x 4x
sin x sin 4 x 2 sin
cos
2
2
5x
3x
2 sin cos
2
2
H.Melikyan/1200
18
Example
Verify the following identity:
sin x sin y
x y
x y
tan
cot
sin x sin y
2
2
Solution
x y
x y
2 sin
cos
sin x sin y
2
2
sin x sin y 2 sin x y cos x y
2
2
x y
x y
sin
cos
x y
x y
2
2
tan
cot
x y
x y
2
2
cos
sin
2
2
H.Melikyan/1200
19
Example
Express the following as a product and if possible find
the exact value. cos750 cos 150
H.Melikyan/1200
20
Example
Verify that the following is an identity:
sin 3 x sin x
tan x
cos 3 x cos x
H.Melikyan/1200
21
Equations Involving a Single Trigonometric
Function
•
To solve an equation containing a single trigonometric function:
• Isolate the function on one side of the equation.
sinx = a (-1 ≤ a ≤ 1 )
cosx = a
(-1 ≤ a ≤ 1 )
tan x = a ( for any real a )
• Solve for the variable.
H.Melikyan/1200
22
Trigonometric Equations
y
y = cos x
1
y = 0.5
–4
–2
2
4
x
–1
cos x = 0.5 has infinitely many solutions for – < x <
y
y = cos x
1
0.5
2
–1
H.Melikyan/1200
x
cos x = 0.5 has two solutions for 0 < x < 2
23
Text Example
Solve the equation: 3 sin x 2 5 sin x 1.
Solution
The equation contains a single trigonometric function, sin x.
Step 1 Isolate the function on one side of the equation. We can solve for
sin x by collecting all terms with sin x on the left side, and all the constant
terms on the right side.
3 sin x 2 5 sin x 1
3 sin x 5 sin x 2 5 sin x 5 sin x – 1
2 sin x 2 1
2 sin x 1
sin x -1/2
H.Melikyan/1200
This is the given equation.
Subtract 5 sin x from both sides.
Simplify.
Add 2 to both sides.
Divide both sides by 2 and solve for sin x.
24
Text Example
Solve the equation:
2 cos2 x cos x 1 0,
0 x < 2.
Solution
The given equation is in quadratic form 2t2 t 1 0 with t
cos x. Let us attempt to solve the equation using factoring.
2 cos2 x cos x 1 0
This is the given equation.
(2 cos x 1)(cos x 1) 0
2 cos x 1 0
or
Factor. Notice that 2t2 + t – 1 factors as (t – 1)(2t + 1).
cos x 1 0
2 cos x 1 cos x 1 cos x 1/2
Set each factor equal to 0.
Solve for cos x.
x x 2 x
The solutions in the interval [0, 2) are /3, , and 5/3.
H.Melikyan/1200
25
Example
Solve the following equation:
7 cos 9 2 cos
Solution:
7 cos 9 2 cos
9 cos 9
cos 1
,3 ,5
2n
H.Melikyan/1200
26
Example
Solve the equation on the interval [0,2)
3
tan
2
3
Solution:
3
tan
2
3
7
and
2 6
6
7
and
3
3
H.Melikyan/1200
27
Example
Solve the equation on the interval [0,2)
cos x 2 cos x 3 0
2
Solution:
cos2 x 2 cos x 3 0
(cos x 3)(cosx 1) 0
cos x 3 0 cos x 1 0
cos x 3 cos x 1
no solution x 0
x0
H.Melikyan/1200
28
Example
Solve the equation on the interval [0,2)
sin 2 x sin x
Solution:
sin 2 x sin x
2 sin x cos x sin x
2 cos x 1
1
cos x
2
5
x ,
3
3
H.Melikyan/1200
29