Compound angles
Download
Report
Transcript Compound angles
Compound Angles
Higher Maths
Compound Angles
Click on an icon
Ans
Trig Equations 1
Trig Equations 3
Trig Equations 2
Ans
Ans
Sin (A+B), Sin (A-B)
Exact Values
Cos (A+B) , Cos (A-B)
Higher trig. questions
Using the four formulae
Trigonometric Equations 1
Solve the following equations for 0 < x < 360, x R
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
2sin 2x + 3cos x = 0
3cos 2x - cos x + 1 = 0
3cos 2x + cos x + 2 = 0
2sin 2x = 3sin x
3cos 2x = 2 + sin x
10cos2 x + sin x - 7 = 0
2cos 2x + cos x - 1 = 0
6cos 2x - 5cos x + 4 = 0
4cos 2x - 2sin x - 1 = 0
5cos 2x + 7sin x + 7 = 0
Solve the following equations for 0 < q < 2 , q R
11.
sin 2q - sin q = 0
12.
sin 2q + cos q = 0
13.
cos 2q + cos q = 0
14.
cos 2q + sin q = 0
Trig Equations 1 - Solutions.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
{90, 229, 270, 311}
{48, 120 , 240, 312}
{71,120 , 240 , 289}
{0, 41 , 180 , 319}
{19 , 161 , 210 , 330 }
{37, 143, 210, 330}
{41, 180, 319}
{48, 104, 256, 312}
{30, 150, 229, 311}
{233, 307}
{0, /3 , , 5/3 , 2}
{ /2 , 7/6 , 3 /2 , 11 /6}
{ /3, , 5 /3}
{ /2 , 7/6 , 11/6}
Trig. Equations 2
Use the formula Sin2x = 2sinxcosx , Cos2x = 2cos2x -1 = 1 – 2sin2x
to solve the following equations, for 0 < x < 360, x R
1
5sin2x = 7cosx
2
3cos2x – 10cosx + 7 = 0
3
2cos2x + 4sinx + 1 = 0
4
sin2x = sinx
5
cos2x + cosx = 0
6
5cos2x + 11sinx – 8 = 0
7
3sin2x = 5cosx
8
2cos2x – 9cosx – 7 = 0
9
2cos2x – sinx + 1 = 0
10
2sin2x = 3sinx
11
3cos2x – 7cosx + 4 = 0
12
4cos2x + 13sinx – 9 = 0
Trig Equations (2) - Solutions
Question
Solution
1
{ 44°, 90°, 136°, 270°}
2
{ 48°, 312°}
3
{ 210°, 330°}
4
{ 60°, 180°, 300°}
5
{ 60°, 180°, 300°}
6
{ 30°, 37°, 143°, 150°}
7
{ 56°, 90°, 124°, 270°}
8
{ 221°, 139°}
9
{ 49°, 131°, 270°}
10
{ 41°, 180°, 319°}
11
{ 80°, 280°}
12
{ 39°, 90°, 141°}
Trigonometric equations 3
Solve for 0 x
360o
1. 5cos2x + sinx – 2 = 0
8. 2cos2x + cosx – 3 = 0
2. 3cos2x – 2cosx + 3 = 0
9. 3sin2x = sinx
3. 5sin2x = 7cosx
10. 7cos2x -17cosx + 1 = 0
4. cos2x + 4sinx -1 = 0
11. cos2x – 8cosx + 1 = 0
5. 7sin2x = 13sinx
12. 4sin2x = 5cosx
6. cos2x + sinx – 1 = 0
13, 8cos2x + 38cosx + 29 = 0
7. 3cos2x + sinx – 1 = 0
14. 3cos2x – 11sinx – 8 = 0
Trig Equations 3 - Solutions
1. SS = {37,143,210,330}
3. SS = {44,90,136,270}
5. SS = {0,22,180,338,360}
7. SS = {42,138,210,330}
9.
SS = {0,80,180,280,360}
11. SS = {90,270}
13. SS = {151,209}
2.
SS = {71,90,270,289}
4.
SS = {0,180,360}
6.
SS = {0,30,150,180,360}
8. SS = {0,360}
10. SS = {107,253}
12. SS = {39,90,141,270}
14. SS = {236,270,304}
Continued on next slide
Continued on next slide
Continued on next slide
Exact Values
Worked example 1
By writing 210 as 180 + 30 , find the exact value of sin210
Solution 1
sin210 = sin(180 + 30)
= sin180cos30 + cos180 sin30
=
0.
= - 1
2
3
2
+ (-1) .
1
2
Worked example 2
By writing 315 as 360 - 45 , find the exact value of cos315
Solution 2
cos315 = cos(360 - 45)
= cos360 cos45 + sin360 sin45
= 1. 1 + 0. 1
2
2
1
=
2
Continued on next slide
Use the previous ideas to find the exact values of the following
1. sin 150
2. cos 225 3. sin 240
4. cos 300 5. sin 120 6. cos 135
7. sin 135 8. cos 210 9. sin 315
Higher Trigonometry Questions
This set of questions would be suitable as revision for pupils who have
done the course work on trigonometry.
1. If A is acute and sin A
2. If A is obtuse and sin A
4
, find the exact values of sin2A and cos2A
5
5
, find the exact values of sin2A and cos2A.
13
3. If A and B are acute and sin A
4. If A is acute and cos A
Continued on next slide
1
1
, cos B
, find the exact value
2
3
of cos (A-B).
8
, find the exact value of cos2A.
17
5. Solve the equations for
0 x 360
a)5sin2x = 7cosx
a)5cos2x – 7cosx + 6 = 0
a)4cos2x – 10sinx -7 = 0
a)4sin2x = 3sinx
a)8cos2x – 2cosx + 3 = 0
a)3cos2x + 7sinx – 5 = 0
a)6sin2x = 11sinx
6. Solve for
0 x 2
a) 2 cos2 x cos x 1 0
b) 2sin2x +sinx = 0
c) cos2x – 4cosx = 5
Continued on next slide
7. Find the exact value of sin45 + sin135 + sin225
8. Show that
1
sin(x ) (cos x 3 sin x)
6
2
9. Show that sin(x+30) – cos(x+60) = 3sinx
10. Show that sin(x+60) – sin(x+120) = sinx
11. Prove that tan x tan y
sin(x y )
cos x cos y
12. Prove that (sinx + cosx)2 = 1 + sin2x
13. Prove that sin3xcosx + cos3xsinx = 1 sin2x
2
14. By writing 3x as 2x + x show that
sin3x = 3sinx – 4sin3x
cos3x = 4cos3x – 3cosx
Continued on next slide
2 tan x
15. Using the fact that tan x sin x , show that
sin 2 x
2
cos x
1 tan x
16.
Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)]
17. Work out the exact values of
19. If sinx=
a) cos330 b) sin210 c) sin135
5
and x is acute, find the exact values of
13
a) sin2x
b) cos2x
c) sin4x
20. Use the formula for sin (x+y) to show that x+y = 45.
1
x
y
3
Continued on next slide
2
21. Use the formula for cos (x+y) to show that
cos (x+y) = 1
26
22. If sin A =
x y
3
3
2
1
1
, sin B= , and A is obtuse and B is acute,
2
3
find the exact values of
a) sin2A
b) cos(A-B)
23. Solve the equation sinxcos33 + cosxsin33 = 0.9
24.
Simplify cos225 – sin225
25 Solve the equations
0 x 360
a) 4sin2x = 5sinx
b) cos2x + 6cosx + 5 = 0
26.
The diagram shows two right angled triangles.
Find the exact value of sin (x+y).
12
13
4
x
3
y