cjones_pan-GASS_poster_cloth.pptx

Download Report

Transcript cjones_pan-GASS_poster_cloth.pptx

Cloud-topped boundary layer response time scales in MLM and LES
Christopher R. Jones, Christopher S. Bretherton, Peter N. Blossey
University of Washington, Seattle USA
β€’ Classic MLM arguments (e.g., Schubert et al, 1979) suggest
two characteristic time scales for a well-mixed CTBL
evolution:
β€’ Inversion-deepening: 𝜏inv = 𝐷 βˆ’1 ~ a few days.
𝑧𝑖
β€’ Thermodynamic: 𝜏th =
~1 day.
Fast cloud base response in MLM and LES
Fast time scale due to entrainment feedbacks
𝑀𝑒 +𝑀𝑠
β€’ We use a MLM and LES to show that, in addition to these
time scales, a separate fast time scale exists, which is
associated with entrainment-cloud thickness feedbacks:
β€’ Entrainment-LWP: πœπ‘’ ~ a few hours.
LES
MLM
π€πŸ (day βˆ’1 )
Intermediate
π€πŸ‘ day βˆ’1
Slow
No R,P,E
-1.19
-1.19
-0.32
Incl. P; No R,E
-1.19
-1.19
-0.32
Incl. P,R; No E
-1.19
-0.68
-0.32
Incl. P,R,E (full MLM)
-5.72
-1.17
-0.11
-4.98
-1.19
-0.14
π’˜π’† = 𝑐1
𝒛𝒃
πŸβˆ’
+ 𝑐2
π’›π’Š
Eigenvalues of the linearization L with or without including the
direct impact of radiation (R), precipitation (P) or entrainment
feedbacks (E).
Idealized Test Case for MLM and LES
Control (CTL): GCSS DYCOMS-II RF01 case (Stevens et al. 2005, MWR).
β€’ Non-precipitating, well-mixed nocturnal Sc.
β€’ Entrainment rate, liquid water path, turbulence well-observed.
β€’ Initialized with cloud-topped mixed layer, zi = 840 m, N = 150 cm-3.
β€’ Linear πœƒ, moisture profiles above cloud layer, initial Ξ”πœƒβ„“ = 9 K.
β€’ D = 3.75x10-6 s-1, SST = 292.5 K.
β€’ Constant moisture profile π‘žπ‘‘+ = 1.5g kg βˆ’1 above cloud layer.
β€’ Simplified dependence of radiative cooling on cloud structure.
Perturbation (𝚫πͺ+
𝐭 ):
β€’ Moist layer π‘žπ‘‘+ = 2.25g kg βˆ’1 above the BL that subsides into cloud
top after approximately 5 hours.
Extracting time scales from MLM linearization
Original system of equations:
π‘‘π’š
= 𝒇(π’š; 𝜢)
𝑑𝑑
Consider a perturbation at 𝑑 = 0 to either the forcing parameters (𝜹𝜢) or the state
(πœΉπ’šπŸŽ ), and linearize:
𝑑
πœΉπ’š β‰ˆ 𝑳 π’šπŸŽ ; 𝜢𝟎 πœΉπ’š + πœΉπ‘­
𝑑𝑑
where
πœ•π‘“π‘–
πœ•π’‡
𝐿𝑖𝑗 =
, πœΉπ‘­ =
π›Ώπ›Όπ‘˜
πœ•π‘¦π‘—
πœ•π›Όπ‘˜
π’šπŸŽ
Models
Physical interpretation of fast entrainment response
The entrainment closure can be written as:
2.5𝐴
𝑧𝑏
𝑧
𝑧
𝑏
𝑏
β€²
β€²
β€²
β€²
𝑀𝑒 =
1βˆ’
𝑀𝑏 𝑐+
𝑀 𝑏 𝑠 = 𝑐1 𝑑 1 βˆ’
+ 𝑐2 (𝑑)
Δ𝑏
𝑧𝑖
𝑧𝑖
𝑧𝑖
The terms 𝑐1 (𝑑) and 𝑐2 (𝑑) are approximately constant over short times (see figure
below), while cloud base can respond quickly.
𝑀𝑒 β‰ˆ 𝑐1
𝑧𝑏
1βˆ’
+ 𝑐2
𝑧𝑖
π‘˜
Solution:
πœΉπ’š 𝑑 = 𝑒 𝑳𝑑 πœΉπ’šπŸŽ + (𝑒 𝑳𝑑 βˆ’ 𝑰)π‘³βˆ’πŸ πœΉπ‘­
LES: SAM6.7, Ξ”π‘₯ = Δ𝑦 = 25 m, Δ𝑧 = 5 m up to 1500 m, Lx= Ly = 6.4
km, periodic BCs (More details: Uchida et al. 2010, ACP).
In terms of eigenvalues (πœ†π‘– ) and eigenvectors (𝒗𝒋 ) of L:
π‘žπ‘‘+
π‘žπ‘‘+ = 1.5 g kg βˆ’1
π€πŸ (day βˆ’1 )
Fast
Feedbacks included in
linearization
= 2.25 g kg
πœΉπ’š(𝑑) =
βˆ’1
slow
π‘Žπ‘— exp πœ†π‘— 𝑑 + 𝑏𝑗 𝒗𝒋
𝑗
Time scales:
πœπ‘– = βˆ’πœ†βˆ’1
𝑖
Ξ”q+
t (LES)
CTL (LES)
MLM: LES-tuned entrainment and drizzle (More details: Caldwell and
Bretherton 2009, J. Climate; Uchida et al. 2010, ACP).
𝐡𝐿
π‘‘β„Ž 1
Δ𝐹
𝑅
=
𝑀𝑒 Ξ”i β„Ž + 𝑀𝑠 β„Ž0βˆ— βˆ’ β„Ž βˆ’
𝑑𝑑 𝑧𝑖
𝜌0
π‘‘π‘žπ‘‘ 1
=
𝑀𝑒 Δ𝑖 π‘žπ‘‘ + 𝑀𝑠 π‘ž0βˆ— βˆ’ π‘žπ‘‘ + 𝐹𝑃 0
𝑑𝑑
𝑧𝑖
𝑑𝑧𝑖
= 𝑀𝑒 βˆ’ 𝐷𝑧𝑖
𝑑𝑑
𝑀𝑒 =
𝐴𝑀 βˆ—3
𝑧𝑖 Ξ”i 𝑏
CTL
Ξ”π‘žπ‘‘+
Linearized
Important points:
β€’ Time scales determined by eigenvalues of linearization.
β€’ Eigenvectors indicate which perturbation vectors are associated with a given time
scale.
β€’ Response to a given perturbation depends on how that perturbation projects onto
each eigenvector.
β€’ Linearization works remarkably well for predicting initial evolution of perturbation.
Evolution of perturbation eigenvectors in MLM
(Entrainment Closure)
β€’
β€’
β€’
β€’
𝑀𝑒 : Entrainment rate
D: Large-scale divergence
π‘žπ‘‘ : Total water mixing ratio
Δ𝑖 πœƒ = πœƒ 𝑧𝑖+ βˆ’ πœƒ
Thanks: Marat Khairoutdinov for SAM
Funding: NOAA MAPP CPT
𝑧𝑖
𝑑𝑧𝑏
𝑀𝑒 + 𝑀𝑠
= 𝑁 𝑧𝑖 , 𝑧𝑏 , β„Ž βˆ’
+
𝑑𝑑
𝑧𝑖
πœ†fast β‰ˆ πœ†th
+
𝑐1 +
2 𝑧𝑏 𝑧𝑏
𝑧𝑖
πœ†π‘’ = βˆ’4.8 day
βˆ’1
Physically for this perturbation, increasing π‘žπ‘‘+ implies:
οƒ˜ cloud base initially drops (cloud thickens rapidly, generates more turbulence)
οƒ˜ 𝑀𝑒 increases in response (increases entrainment warming, drying)
οƒ˜ opposes further LWP increase
Conclusions
MLM
Variables:
β€’ 𝑧𝑖 : Inversion height
β€’ 𝑧𝑏 : Cloud base
β€’ β„Ž: Moist static energy
β€’ 𝑀𝑠 : Surface exchange velocity
The thermodynamic variables can be combined in the MLM to generate:
𝑑𝑧𝑏 1
+
𝐡𝐿
=
𝑀𝑒 𝑧𝑏 βˆ’ 𝑧𝑏 βˆ’ 𝑀𝑠 𝑧𝑏 βˆ’ Δ𝐹𝑏
𝑑𝑑
𝑧𝑖
𝑧𝑏
Using the approximation 𝑀𝑒 β‰ˆ 𝑐1 1 βˆ’
+ 𝑐2 and rearranging yields:
Fast component dominates initial cloud thickening response through rapid cloud base adjustment
β€’ MLM shows three well-separated time scales:
β€’ Slow BL-deepening scale.
β€’ Intermediate thermodynamic adjustment scale.
β€’ Fast entrainment-LWP adjustment scale.
β€’ Fast scale exhibited in both LES and MLM.
β€’ Magnitude of fast scale in MLM dependent on entrainment
closure.
β€’ LES time scale supports use of cloud-thickness sensitive
entrainment closure in MLM.