cellular respiration ppt

Download Report

Transcript cellular respiration ppt

Cellular Respiration
copyright cmassengale
1
Cellular Respiration

A catabolic, exergonic, oxygen (O2) requiring
process that uses energy extracted from
macromolecules (glucose) to produce energy
(ATP) and water (H2O).
C6H12O6 + 6O2  6CO2 + 6H2O + energy
glucose
ATP
copyright cmassengale
2
Question:

In what kinds organisms does cellular
respiration take place?
copyright cmassengale
3
Plants and Animals


Plants - Autotrophs: self-producers.
Animals - Heterotrophs: consumers.
copyright cmassengale
4
Mitochondria

Organelle where cellular respiration takes
place.
Outer
membrane
Inner
membrane space
Matrix
Cristae
Inner
membrane
copyright cmassengale
5
Redox Reaction


Transfer of one or more electrons from
one reactant to another.
Two types:
1. Oxidation
2. Reduction
copyright cmassengale
6
Oxidation Reaction

The loss of electrons from a substance.

Or the gain of oxygen.
Oxidation
C6H12O6 + 6O2 6CO2 + 6H2O +
energy
glucose
ATP
copyright cmassengale
7
Reduction Reaction


The gain of electrons to a
substance.
Or the loss of oxygen.
Reduction
C6H12O6 + 6O2 
6CO2 + 6H2O + energy
glucose
ATP
copyright cmassengale
8
Breakdown of Cellular
Respiration

Four main parts (reactions).
1. Glycolysis (splitting of sugar)
a. cytosol, just outside of mitochondria.
2. Grooming Phase
a. migration from cytosol to matrix.
copyright cmassengale
9
Breakdown of Cellular
Respiration
3. Krebs Cycle (Citric Acid Cycle)
a. mitochondrial matrix
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
a. Also called Chemiosmosis
b. inner mitochondrial membrane.
copyright cmassengale
10
1. Glycolysis


Occurs in the cytosol just outside of
mitochondria.
Two phases (10 steps):
A. Energy investment phase
a. Preparatory phase (first 5 steps).
B. Energy yielding phase
a. Energy payoff phase (second 5
steps).
copyright cmassengale
11
1. Glycolysis
A. Energy Investment Phase:
Glucose (6C)
2ATP
C-C-C-C-C-C
2 ATP - used
0 ATP - produced
0 NADH - produced
2ADP + P
Glyceraldehyde phosphate (2 - 3C)
(G3P or GAP)
copyright cmassengale
C-C-C
C-C-C
12
1. Glycolysis
B. Energy Yielding Phase
Glyceraldehyde phosphate (2 - 3C)
(G3P or GAP)
4ADP + P
4ATP
GAP
GAP
C-C-C C-C-C
0 ATP - used
4 ATP - produced
2 NADH - produced
C-C-C C-C-C
(PYR) (PYR)
Pyruvate (2 - 3C)
(PYR)
copyright cmassengale
13
1. Glycolysis

Total Net Yield
2 - 3C-Pyruvate (PYR)
2 - ATP (Substrate-level
Phosphorylation)
2 - NADH
copyright cmassengale
14
Substrate-Level
Phosphorylation

ATP is formed when an enzyme transfers a
phosphate group from a substrate to
ADP.
Enzyme
Example:
PEP to PYR
Substrate
(PEP)
Product
(Pyruvate)
OC=O
C-OCH2
P
P
P
Adenosine
ADP
OC=O
P P
C=O
CH2copyright cmassengale
P
Adenosine
ATP
15
Fermentation



Occurs in cytosol when “NO Oxygen” is
present (called anaerobic).
Remember: glycolysis is part of
fermentation.
Two Types:
1. Alcohol Fermentation
2. Lactic Acid Fermentation
copyright cmassengale
16
Alcohol Fermentation

C
C
C
C
C
C
Plants and Fungi
2ADP
+2 P
beer and wine
2ATP
2NADH
C
C
C
Glycolysis
2 NAD+

2NADH
2 Pyruvic
acid
glucose
copyright cmassengale
2 NAD+
C
C
2 Ethanol
2CO2
released
17
Alcohol Fermentation

End Products: Alcohol fermentation
2 - ATP (substrate-level phosphorylation)
2 - CO2
2 - Ethanol’s
copyright cmassengale
18
Lactic Acid Fermentation

Animals (pain in muscle after a workout).
C
C
C
C
C
C
2ADP
+2 P
2ATP
2NADH
C
C
C
Glycolysis
2 NAD+
2NADH
2 Pyruvic
acid
2 NAD+
C
C
C
2 Lactic
acid
Glucose
copyright cmassengale
19
Lactic Acid Fermentation

End Products: Lactic acid fermentation
2 - ATP (substrate-level phosphorylation)
2 - Lactic Acids
copyright cmassengale
20
2. Grooming Phase


Occurs when Oxygen is present (aerobic).
2 Pyruvate (3C) molecules are transported
through the mitochondria membrane to the
matrix and is converted to 2 Acetyl CoA (2C)
molecules.
Cytosol
2 CO2
C
C
C
Matrix
C-C
2 Pyruvate
2 NAD+
copyright cmassengale
2NADH
2 Acetyl CoA
21
2. Grooming Phase

End Products: grooming phase
2 - NADH
2 - CO2
2- Acetyl CoA (2C)
copyright cmassengale
22
3. Krebs Cycle (Citric Acid Cycle)



Location: mitochondrial matrix.
Acetyl CoA (2C) bonds to Oxalacetic acid
(4C - OAA) to make Citrate (6C).
It takes 2 turns of the krebs cycle to
oxidize 1 glucose molecule.
Mitochondrial
Matrix
copyright cmassengale
23
3. Krebs Cycle (Citric Acid Cycle)
1 Acetyl CoA (2C)
OAA (4C)
Citrate (6C)
FADH2
Krebs
Cycle
2 CO2
(one turn)
3 NAD+
FAD
3 NADH
ATP
ADP +
copyright cmassengale
P
24
3. Krebs Cycle (Citric Acid Cycle)
2 Acetyl CoA (2C)
Citrate (6C)
OAA (4C)
2 FADH2
Krebs
Cycle
4 CO2
(two turns)
6 NAD+
2 FAD
6 NADH
2 ATP
2 ADP
copyright cmassengale
+
P
25
3. Krebs Cycle (Citric Acid Cycle)

Total net yield (2 turns of krebs
cycle)
1. 2 - ATP (substrate-level
phosphorylation)
2. 6 - NADH
3. 2 - FADH2
4. 4 - CO2
copyright cmassengale
26
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)



Location: inner mitochondrial membrane.
Uses ETC (cytochrome proteins) and ATP
Synthase (enzyme) to make ATP.
ETC pumps H+ (protons) across innermembrane
(lowers pH in innermembrane space).
Inner
Mitochondrial
Membrane
copyright cmassengale
27
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)




The H+ then move via diffusion (Proton
Motive Force) through ATP Synthase to make
ATP.
All NADH and FADH2 converted to ATP during
this stage of cellular respiration.
Each NADH converts to 3 ATP.
Each FADH2 converts to 2 ATP (enters the ETC
at a lower level than NADH).
copyright cmassengale
28
4. Electron Transport Chain (ETC) and
Oxidative Phosphorylation
(Chemiosmosis)
Outer
membrane
Inner
membrane space
Matrix
Cristae
Inner
membrane
copyright cmassengale
29
4. ETC and Oxidative Phosphorylation
(Chemiosmosis for NADH)
higher H+
concentration
Intermembrane Space
1H+
E
2H+
3H+
T
C
NAD+
ATP
Synthas
e
Inner
Mitochondrial
Membrane
O2 H O
2
2H+ + 1/2
NADH
+ H+
H+
ADP + P
(Proton Pumping)
H+
ATP
lower H+
concentration
Matrix
copyright cmassengale
30
4. ETC and Oxidative Phosphorylation
(Chemiosmosis for FADH2)
higher H+
concentration
Intermembrane Space
1H+
E
2H+
T
FADH2
+ H+
FAD+
C
2H+ +
1/2O2
H+
ATP
Synthas
e
Inner
Mitochondrial
Membrane
H2O
ADP + P
(Proton Pumping)
H+
ATP
lower H+
concentration
Matrix
copyright cmassengale
31
TOTAL ATP YIELD
1. 04 ATP - substrate-level
phosphorylation
2. 34 ATP - ETC & oxidative
phosphorylation
38 ATP - TOTAL YIELD
ATP
copyright cmassengale
32
Eukaryotes
(Have Membranes)
Total ATP Yield
02 ATP - glycolysis (substrate-level phosphorylation)
04 ATP - converted from 2 NADH - glycolysis
06 ATP - converted from 2 NADH - grooming phase
02 ATP - Krebs cycle (substrate-level phosphorylation)
18 ATP - converted from 6 NADH - Krebs cycle
04 ATP - converted from 2 FADH2 - Krebs cycle
36 ATP - TOTAL

copyright cmassengale
33
Maximum ATP Yield for Cellular
Respiration (Eukaryotes)
Glucose
Cytosol
Glycolysis
2 Acetyl CoA
2 Pyruvate
Mitochondria
Krebs
Cycle
2NADH
2 ATP
6NADH
2FADH2
(substrate-level
phosphorylation)
2NADH
ETC and Oxidative
Phosphorylation
2 ATP
(substrate-level
phosphorylation)
2ATP
4ATP 6ATP
18ATP
4ATP
cmassengale
36copyright
ATP (maximum
per glucose)
2ATP
34
Prokaryotes
(Lack Membranes)
Total ATP Yield
02 ATP - glycolysis (substrate-level phosphorylation)
06 ATP - converted from 2 NADH - glycolysis
06 ATP - converted from 2 NADH - grooming phase
02 ATP - Krebs cycle (substrate-level phosphorylation)
18 ATP - converted from 6 NADH - Krebs cycle
04 ATP - converted from 2 FADH2 - Krebs cycle
38 ATP - TOTAL

copyright cmassengale
35
Question:

In addition to glucose, what other
various food molecules are use in
Cellular Respiration?
copyright cmassengale
36
Catabolism of Various
Food Molecules

Other organic molecules used for fuel.
1. Carbohydrates: polysaccharides
2. Fats: glycerol’s and fatty acids
3. Proteins: amino acids
copyright cmassengale
37
copyright cmassengale
38