전자회로(7판)

Download Report

Transcript 전자회로(7판)

1
Chapter 9
전력 증폭기
Electronic Device (Floyd )- Ch. 9
2
목
표
 A급, B급, AB급, C급 전력증폭기의 동작 해석 및 고찰
개
요
• 전력 증폭기는 대신호 증폭기로 소신호 증폭기보다
부하선상의 더 큰 신호동작에서 사용됨을 의미
• 전력 증폭기는 통신시스템의 송수신기의 최종 단에 적용
• 증폭기의 분류는 증폭기가 선형영역에서 동작하기 위한
입력주기의 비율에 근거
Electronic Device (Floyd )- Ch. 9
3
9-1. A급 증폭기
• A급 증폭기 – 입력신호에 대해 증폭된 신호가 선형영역이 되도록
바이어스 된 증폭기
• 부하에 전력을 제공하는 것이 목적인 대신호 증폭기
• 전력증폭기 – 열 방출을 고려(cooling fan, heat sink)
기본 A급 증폭기
Electronic Device (Floyd )- Ch. 9
4
중앙에 위치한 Q 점
• A급 증폭기의 Q점은 교류 부하선의 중앙에 위치
• Q점을 중심으로(ICQ, VCEQ)
• 컬렉터 전류 Ic : Ic(sat) ~ 0, 컬렉터-이미터 전압 Vce(cutoff) ~ 0
• Q점이 교류부하선의 중앙에 위치하지 못하면 출력신호는 제한 받음
Q점이 중앙에 위치할 때 최대 A급 신호 출력
Electronic Device (Floyd )- Ch. 9
5
Q점이 차단영역으로 접근
Q점이 포화영역으로 접근
Electronic Device (Floyd )- Ch. 9
6
전력 이득
• 전력증폭기는 부하에 전력을 전달
• 전력이득(Ap)은 부하에 전달된 전력과 입력전력간의 비
• 전력이득은 변수에 따라 여러 가지 공식으로 표현 가능 (전압값은
실효값으로)
PL = V2L/RL , Pin = V2in/Rin
Ap = PL/Pin , Ap = Av2(Rin/RL)
• 입력신호가 없을 때의 TR의 전력소모는 동작점에서의 전압과 전류의 비
PDQ=ICQVCEQ
출력 전력
• 출력전력은 실효부하전류와 실효부하전압의 곱
Pout = V L(rms)IL(rms)
• A급 증폭기의 최대 출력은 Pout(max) = 0.5VCEQICQ
Electronic Device (Floyd )- Ch. 9
7
효 율
• 효율은 교류출력전력과 직류입력전력의 비
• 평균 전력입력전류 ICC는 ICQ, 입력전압은 2VCEQ
직류 전력은 PDC=ICCVCC=2ICQVCEQ
• 커패시터 결합 A급 증폭기의 최대효율은 25%
effmax = Pout/PDC =0.5 ICQVCEQ/2 ICQVCEQ=0.25
• 변압기를 이용하여 효율을 증가시킬 수 있지만 전위의 일그러짐 현상과
비용, 크기 등에 결점
• A급 증폭기는 아주 작은 부하전력이 요구되는 응용분야에서 사용
Electronic Device (Floyd )- Ch. 9
8
9-2. B급과 AB급의 푸쉬풀 증폭기
• B급 증폭기 - 입력주기의 180°에서는 직선영역에서 나머지 180°에서는
차단되도록 바이어스된 증폭기
• AB급 증폭기 - 180°이상의 영역에서 동작되도록 바이어스된 증폭기
• 장점 – A급 증폭기보다 더 효율적이므로 주어진 입력 전력의 크기보다
더욱 큰 출력전력의 획득이 가능
• 단점 – 입력파형의 충실한 재현을 위한 회로구성이 복잡
• 전주기를 증폭시키기 위해 푸시풀 구성 도입
기본 B급 동작
Electronic Device (Floyd )- Ch. 9
9
B 급 동작
• 차단영역에서의 Q점 – B급 증폭기는 차단점(ICQ=0, VCEQ=VCE(cutoff))에서
바이어스
• 입력신호가 증폭기를 도통시킬 때 증폭기는 차단영역 이상 (0.7V)의
직선에서 동작
• 양의 반주기 동안만 동작하므로 전주기에 대해 동작이 가능하도록
Push-pull 동작이 필요
• Push-pull의 형태 : 변압기 결합, 상보형 트랜지스터
공통 컬렉터 B급 증폭기
Electronic Device (Floyd )- Ch. 9
10
B 급 푸시풀 동작
• 변압기 결합 Push-pull 구성 – 입력변압기가 센터 탭 되어 입력 신호에
대해 다른 한쪽이 위상 반전되도록 하여 두 개의 신호가 발생됨으로써
입력신호의 양의 주기에서는 Q1이 음의 주기에서는 Q2가 동작하여 두
개의 신호가 출력변압기에 의해 결합되는 동작
변압기 결합의 푸시풀 회로
Electronic Device (Floyd )- Ch. 9
11
• 상보형 트랜지스터 Push-pull 구성 – 두개의 이미터 플로어를 결합한
형태로 npn TR(Q1)은 입력신호의 양의 주기에서 도통, 음의
주기에서는 pnp TR(Q2)가 음의 주기에서 도통되는 형태
• 직류 바이어스 전류가 인가되지 않음으로 입력신호에 의해 TR이
도통되는 특징을 갖는 가장 일반적인 Push-pull 회로
상보형 TR 푸시풀 회로의 동작
Electronic Device (Floyd )- Ch. 9
12
교차 일그러짐
교차 일그러짐(교차왜곡 ; crossover distortion)
• B급 증폭기의 단점은 직류 베이스 전압이 0일 때 TR이 도통 하려면
입력신호 전압이 장벽전압(VBE) 보다 커야 되므로 일정 구간에서
출력이 나타나지 않는 구간이 존재하는 것
B급 증폭기의 교차 일그러짐
Electronic Device (Floyd )- Ch. 9
13
AB 급 동작을 위한 푸시풀 증폭기의 바이어스
• 교차 일그러짐의 해결은 TR의 VBE가 극복되도록 바이어싱 ⇒푸시풀
단에 입력신호가 없을 때에도 다소 동작상태에 있도록 바이어싱
• 전류미러(current mirror) :
⇒ 교차일그러짐 현상 제거(AB급 동작)
⇒ D1과 D2의 다이오드 특성과 TR의
베이스-이미터 접합부의 특성과
같으면 다이오드에서의 전류와
TR의 전류가 같아지는 현상
• 다이오드의 전압강하와 TR의
전압강하가 같으면
ICQ=(VCC-0.7V)/R1
교차 일그러짐을 제거하도록
바이어스된 푸시풀 증폭기
Electronic Device (Floyd )- Ch. 9
14
• 열 폭주 현상(thermal runaway) – TR의 전압강하가 다이오드 에서의
전압강하가 일치하지 않거나 다이오드와 TR의 온도 평형이 맞지
않으면 컬렉터 전류는 온도 불안정에 따른 전위차 발생(베이스-이미터
전류 증가)
• 변압기 결합증폭기에서도 교차 일그러짐 발생
변압기 결합 푸시풀 증폭기
Electronic Device (Floyd )- Ch. 9
15
• 교류동작 – Q 점은 차단영역보다 다소 높게 위치
• 차단 전류는 Ic(sat) =VCC/RL
• 직류 부하선은 VCEQ와 직류차단전류인 IC(sat)를 통과
• 포화전류 I C(sat)는 양쪽트랜지스터의 컬렉터-이미터가 단락되면서
만들어지는 전류 ⇒ 두 전원의 단락으로 최대 전류 발생(TR 파괴)
상보형 대칭 푸시풀 증폭기의 부하선
Electronic Device (Floyd )- Ch. 9
16
• 트랜지스터 Q1과 Q2는 서로 교차하면서 차단과 포화상태
양의 주기 – Q1의 이미터는 Q 점에서 0 ~ +VCC로 변화
음의 주기 – Q2의 이미터는 Q 점에서 0 ~ -VCC로 변화
출력은 VCC보다 약간 적음 ⇒ 신호의 왜곡 초래
• A급의 동작에서는 Q 점은 중앙에 위치, 무신호시에도 전류 흐름
• B급은 무신호시에는 아주 작은 전류가 흐르므로 전력소모는 거의 0
• B급 증폭기의 효율은 79%
AB급 증폭기
Electronic Device (Floyd )- Ch. 9
17
단전원 푸시풀 증폭기
• 두 개의 전원일 경우 출력이 0V 이지만 단일 전원이면 VCC/2
• 출력이 0V 가 아니기 때문에 입력과 출력에 대한 커패시터 결합은
소스와 부하저항으로부터 바이어스 전압을 제거
• 출력 전압은 0~VCC까지 변화
가능하나 현실적으로 불가능
단전원 푸시풀 증폭기
Electronic Device (Floyd )- Ch. 9
18
B/AB급 전력
• 최대 출력 전력
Pout = 0.25VCCIc(sat)
• 직류 입력 전력
PDC = VCCICC=VCC (Ic(sat)/π)
• 효율
Efficiency = Pout/PDC
B급(AB급은 약간 적음)의 최대 효율은 79%.
• 입력저항
Rin=βac(r’e+RE)
RE=RL이므로 Rin=βac(r’e+RL)
Electronic Device (Floyd )- Ch. 9
19
달링턴 AB급 증폭기
• 저저항 부하를 가진 응용에서 구동 증폭기에 대한 입력저항을
증가시켜 심각한 전압이득의 감소를 방지
AB급 달링턴 증폭기
Electronic Device (Floyd )- Ch. 9
20
MOSFET 푸시풀 증폭기
MOSFET 푸시 풀 증폭기는 BJT에 비해
• 장점 – 바이어스회로가 간단하고 구동 조건 단순하며
추가되는 구동에 대해 병렬로 연결이 가능하며, 온도의
불안정에 대해 강점
• 단점 – TR에서의
전압강하가 필요할 때
정확한 값의 발생이
곤란하며, 정전기
방출에 대해 취약
MOSFET 푸시풀 증폭기
Electronic Device (Floyd )- Ch. 9
21
9-3. C급 증폭기
• 180°미만에서도 도통이 될 수 있도록 한 증폭기
• 효율이 다른 증폭기에 비해 훨씬 높은데 이는 더 큰 출력 전류의
획득이 가능함을 의미
• 출력파형이 심하게 일그러지므로 고주파의 동조증폭기에서
한정적으로 응용
C급 증폭기의 동작
Electronic Device (Floyd )- Ch. 9
22
C급 동작
• C급 동작 – TR은 (-)VBB 전원에
의해 차단점 이하로 바이어스
• 교류 신호원 전압의 첨두값이
VBB+VBE보다 약간 크므로 입력
주기의 정(+)의 첨두값 부근에서
짧은 기간 동안만 TR이 도통
기본 C급 동작
Electronic Device (Floyd )- Ch. 9
23
전력 손실
• 전력손실 – TR이 짧은 기간 동안만 도통 되므로 전력손실이 적음
• 도통 기간의 전력손실은
PD(on) = VCE(sat)IC(sat)
PD(avg) = (ton/T)(VCE(sat)IC(sat))
C급 파형
Electronic Device (Floyd )- Ch. 9
24
동조 동작
• C급 증폭기는 출력이 입력파형과 다르기 때문에 선형적 응용에서는
무의미 ⇒ 병렬공진회로(tank)를 이용
• 탱크회로의 공진주파수는 f r  1 /(2
• 최대 출력 전력 Pout = 0.5VCC2/RC
• 효율은 거의 100%
Electronic Device (Floyd )- Ch. 9
동조된 C급 증폭기
LC )
25
공진회로 동작
Electronic Device (Floyd )- Ch. 9
탱크회로의 진동