MRI ADNI steering committee Philadelphia April 2014 Bret Borowski - Mayo Matt Bernstein - Mayo Jeff Gunter – Mayo Clifford Jack - Mayo David Jones - Mayo Kejal.
Download ReportTranscript MRI ADNI steering committee Philadelphia April 2014 Bret Borowski - Mayo Matt Bernstein - Mayo Jeff Gunter – Mayo Clifford Jack - Mayo David Jones - Mayo Kejal.
MRI ADNI steering committee Philadelphia April 2014 Bret Borowski - Mayo Matt Bernstein - Mayo Jeff Gunter – Mayo Clifford Jack - Mayo David Jones - Mayo Kejal Kantarci - Mayo Denise Reyes – Mayo Matt Senjem – Mayo Prashanthi Vemuri - Mayo Chad Ward – Mayo Charlie DeCarli – UCD Nick Fox – UCL Norbert Schuff/Alix Simonson – UCSF/VA Paul Thompson – USC Danielle Harvey - biostats ADNI GO/2 MRI 3T Protocol CORE SEQEUNCES 3D T1 unaccelerated & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphometry FLAIR –cerebro vascular disease grading long TE 2D gradient echo – ARIA-H (CMB) grading ==================================== EXPERIMENTAL SEQEUNCES Siemens (30 sites) - ASL perfusion (20), and high res T2 hipp subfield GE (14 sites) - DTI Phillips (12 sites) – task free-fMRI MR measures performed Structural MRI measures BSI – UCL Freesurfer – UCSF/SFVA TBM – USC TBM-Syn – Mayo Cerebrovascuar disease – UC Davis AIRA H (CMB) – Mayo ASL - UCSF/SFVA Hipp subfields - UCSF/SFVA DTI - USC TF-fMRI - Mayo T1 Based Measurements – Non-Accelerated Sample Size/arm for a 12 month trial – D Harvey Variable BBSI (UCL) VBSI (UCL) Hippo BSI (UCL) TBM-statROI (USC/UCLA) TBM-SyN (Mayo) Inf. Lat. Vent. vol (UCSF) Inf. Temp. vol (UCSF) Lat. Vent. vol (UCSF) Mid. Temp. vol. (UCSF) Fusiform volume (UCSF) CN EMCI LMCI AD 241 234 197 97 283 260 171 208 - 936 - - 271 292 - - 437 356 184 62 1113 780 571 250 1045 1629 413 454 323 588 356 13814 1332 1043 411 281 1745 1513 923 336 From Ching, Thompson et al in review From Ching, Thompson et al in review n80 sample sizes adjusted for normal aging AD Accel Stat ROI p<0.00001 NonAccel Stat ROI p<0.00001 6mo n80 [CI] 229 [160, 568] 293 [143, 366] 12mo n80 [CI] 282 [89, 697] 306 [208, 489] LMCI Accel Stat ROI p<0.00001 NonAccel Stat ROI p<0.00001 6mo n80 [CI] 983 [839, 2041] 1669 [1147, 2026] 12mo n80 [CI] 745 [307, 1672] 815 [356, 7263] EMCI Accel Stat ROI p<0.00001 NonAccel Stat ROI p<0.00001 6mo n80 [CI] 1076662 [76500, 1554330] 81761 [3500, 1268210] 12mo n80 [CI] 11439 [2458, 63066] 14417 [1450, 1992043] From Vemuri et al (Mayo) Estimated sample sizes with bootstrap 95% CIs to detect a 25% reduction in TBM-SyN with 80% power and two-sided α = 0.05 Accelerated n (95% CI) Unaccelerated n (95% CI) Difference* n (95% CI) CN 2238 (1089, 8984) 1729 (897, 4596) 509 (−751, 5349) EMCI 2850 (1507, 7799) 2673 (1409, 7865) 177 (−3641, 2687) LMCI 1015 (584, 2303) 841 (499, 1754) 174 (−373, 1068) AD 593 (328, 1332) 438 (254, 1009) 155 (−103, 761) CN 749 (446, 1524) 667 (421, 1332) 82 (−152, 446) EMCI 1213 (728, 2532) 898 (580, 1605) 315 (−7, 1297) LMCI 297 (213, 451) 286 (202, 428) 11 (−95, 132) AD 133 (74, 271) 107 (70, 192) 26 (−50, 138) CN 259 (181, 412) 276 (200, 404) −17 (−84, 46) EMCI 361 (265, 523) 272 (205, 375) 89 (35, 182) LMCI 157 (113, 219) 154 (108, 230) 3 (−39, 36) 56 (33, 97) 51 (30, 93) 5 (−25, 32) Baseline to 3 months Baseline to 6 months Baseline to 12 months AD Changing from non-accelerated to accelerated scans – consistent atrophy rate is possible with well-matched sequences and K-means BSI derived atrophy rate Leung et al (Fox) sMRI - summary Rates by group and sample size estimates for trials – not identical (interchangeable) but no consistent diff between accel vs unaccel ( USC and Mayo). Change from unacccel to accel image pairs – no effect Siemens or Philips, but effect for GE (UCL) Overall recommendation - use accel, consistently Sample size est. 12 months CN & EMCI: n ~ 200s per arm LMCI: n ~ 100s per arm AD: n ~ 50-100 per arm Analysis – WMH and GM volume 1716 scans analyzed on 867 unique individuals 25% Normal 0.3% SMC 43% EMCI 19% LMCI 13% Demented Average number of scans: 2 + 1 [range: 1-5] Results by Diagnostic Group Normal -1.47 EMCI -1.16 LMCI -1.18 Percentage of Population at location Dementia -1.10 Longitudinal Difference in WMH Intercept Years Estimate 6.4366557 0.3661749 Std Error 0.452604 0.070711 Prob>|t| <.0001* <.0001* Impact of Gray Matter and WMH on longitudinal Memory Performance Variable Time Manufacturer Diagnosis Age Education Gender WMH Gray WMH*Time Gray* Time F Ratio Prob > F 2.1364 0.6480 112.5868 18.8370 24.8660 23.4422 0.5798 6.8135 5.8824 1.4909 0.1458 0.5845 <.0001* <.0001* <.0001* <.0001* 0.4467 0.0093* 0.0163* 0.2238 Conclusions MRI Manufacturer related differences are present and need to be taken into account in all analyses Normals have significantly less WMH than other groups, but there are no significant group differences amongst cognitively impaired groups WMH increase in volume with time Both Gray and WHM volumes at baseline affect cognitive measures in ADNI 2 ARIA-H (CMB) Variable Baseline 3 month change 6 month change 12 month change CN 177 0.42 (1.02) 153 0.059 (0.33) 158 0.095 (0.45) 146 0.16 (0.58) SMC EMCI LMCI AD 91 0.24 (0.64) 290 3.52 (32.16) 146 1.08 (4.44) 134 1.54 (6.08) 44 0.068 (0.25) 263 0.084 (0.42) 132 0.16 (0.69) 104 0.42 (2.11) - 237 0.16 (0.63) 135 0.27 (1.17) 87 0.4 (2.03) - 234 0.22 (0.99) 122 0.45 (1.71) 65 0.91 (3.25) Baseline – increase with clinical severity (EMCI few very high outliers) Rates – increase with clinical severity Prevalence of superficial siderosis was 1% prevalence of microhemorrhages was 25% increasing with age and b-amyloid load Topographic densities of microhemorrhages were highest in the occipital lobes and lowest in the deep/infratentorial regions • Greater number of microhemorrhages at baseline was associated with a greater annualized rate of additional microhemorrhages • • • • ASL Numeric values Precuneus CN EMCI LMCI AD 40 32.3 (11.6) 47 31.8 (10.1) 35 31.9 (9.7) 29 27.8 (9.5) 0-3mo change (x 104 ) 33 -1.60 (13.72) 35 -1.90 (8.27) 29 -2.17 (11.21) 14 -1.24 (9.46) 0-6mo change (x 104 ) 27 -2.62 (10.5) 32 -1.05 (8.38) 26 -2.88 (7.47) - 0-12 mo change (x 104 ) 12 -4.29 (9.26) 14 -6.37 (6.77) - - 40 32.6 (13.0) 47 31.0 (12.2) 35 28.6 (9.9) 29 27.2 (11.4) 0-3mo change (x 104 ) 33 -3.72 (12.17) 35 -1.58 (11.94) 29 -0.95 (10.33) 14 -2.83 (12.12) 0-6mo change (x 104 ) 27 -2.90 (10.95) 32 -1.89 (7.51) 26 -2.44 (8.36) - 0-12mo change (x 104 ) 12 -2.68 (10.52) 14 -6.60 (7.12) - - Baseline (x 104 ) Posterior Cing. Baseline (x 104 ) Baseline – decreasing perfusion with greater impairment Rates – greater declines with greater impairment ADNI 2 Subfield Add-on Project Project Members: S. Mueller/M. Weiner CIND/UCSF, P Yushkevich U Penn, L Wang Northwestern, K van Leemput, Harvard Affiliated Members: L Collins, Montreal. Methods Used in Project: Subfield Parcellation Schemes f a. Parcellation UPenn Deformation subfields. b. Parcellation NW shape subfields. c. Freesurfer 5.1. subfields. d. CIND manual subfields. e. MGH subfields. f. U Penn ASHS subfields. Results: Year 2: Intermediate Analysis Power to detect significant effect at alpha= 0.05 41 cases (15 controls, mean age 74.2±7.9), 15 MCI mean age: 72.4±8.5, 11 AD mean age: 74.8±9.2) DTI ROI Summary Measures DTI summary measures include the 4 standard DTI measures: fractional anisotropy (FA) mean diffusivity (MD) radial diffusivity (RD) axial diffusivity (AxD) We compute these in 16 bilateral white matter (WM) regions of interest (ROIs) and 1 “total WM” ROI JHU “Eve” atlas – standard IFO: Best ROI for AD-NC effect size; beats a total WM summary AD vs NC Change in FA Those with AD experience greater reduction in FA over 1 year Best picked up in the IFO; whole brain is not bad, but IFO best ROI DTI n80s Similar to HV n80s 2s (z1-a 2 + z power ) 2 n= (0.25b ) 2 2 α=0.05 σ=mean of WM integrity changes β=standard deviation of WM integrity changes Desired power=80% MAYO - ADNI TF-fMRI: Subject Space Spatial-Temporal Dual Regression (STR) pDMN, aDMN, and vDMN fROIs (only voxels within gray matter and excluding voxels with loss of BOLD signal) Spatial Regression fROI Specific Time Course Temporal Regression fROI Specific Spatial Map Control Amyloid Negative Alzheimer’s Dementia SNAP-MCI SMC- CN- CN+ SMC+ AD-MCI AD-D p N 36 8 28 15 6 51 27 NA Male (%) 17 (47) 5 (63) 9 (32) 9 (60) 1 (17) 27 (53) 13 (48) 0.38 Age (q1, q3) 70.5 (62, 75) 68 (67, 72) 73 (69, 77.5) 73 (70, 79) 69.5 (66, 73) 72 (68, 75.5) 74 (72.5, 76.5) 0.08 Educ (q1, q3) 16 (15, 18) 18 (17.5, 18) 16 (16, 16) 16 (16,17) 18.5 (16, 20) 16 (14, 18) 16 (14, 16) 0.17 ADASCOG13 (q1, q3) 12 (9.5, 15) 8.5 (5.5, 11) 8 (6, 10) 10 (9, 11) 10 (10, 10) 16 (10, 20) 32 (29, 38) 2.60E-16 AV-45 (q1, q3) 1.01 (0.98, 1.04) 0.99 (0.97 1.03) 1.00 (0.97, 1.02) 1.33 (1.22, 1.45) 1.37 (1.23, 1.44) 1.33 (1.23, 1.46) 1.46 (1.34, 1.58) 4.78E-25 0.7 0.4 1.2 0.4 1.2 p = 0.0014 Amyloid Negative Control Subject Alzheimer’s Dementia Subject vDMN Hippocampal Functional Connectivity p = 0.0085 0.6 0.5 p = 0.0124 p = 0.0389 p = 0.0588 0.4 0.3 0.2 0.1 0 ADNI 2 protocol changes since last meeting – distributed Feb 2014 Change phantom scanning to site requalification rather than with each exam – create time in exam Optimize DTI and TF-fMRI – longitudinal compatibility maintained ‘high end’ DTI with b=1300 and with ~60 directions added to GE sites at 20x TF-fMRI –10 minute acquisition substituted for existing 7 minute run on all Philips; added to GE 16x or less systems GE - 16x or less, DTI and fMRI; 20x, b=1000/41 and b=1300/60 Philips –10 min TF-fMRI Distribution of electronic protocols protocol exchange; edx files; exam card PDFs vs electronic distribution Positive make ADNI methods more easily accessible Negatives Will create demand for technical assistance MR core can not be help desk to the world Demand falls to field service staff or applications personnel of MR vendors Possibly jeopardize support of MR vendors for ADNI Distribution of electronic protocols steps Request permission from all 3 MR vendors If permission granted, then create access point on LONI to download, user agreement must be signed by down loading party – precluding from using Mayo as open ended help desk Would post new electronic protocols as developed as have done for PDF docs ADNI 3 - MRI protocol Core sequences (17 min) 3D T1 volume (2X accel) – morphometrics (5 min) FLAIR – CVD, pathology detection (4 min) T2* GRE – MCH (5 min) T2 FSE with fat sat – TIV, distortion correction (3 min) Experimental sequences (34 -38 min) ASL – perfusion (8 min) TF-fMRI – connectivity (10 min) DTI – diffusion (8 -12 min) Coronal high res T2 – hippocampal subfields (8 min) Time: 55 min gradient/70-75 min table ADNI 3 Considerations for MRI protocol Unlike ADNI 2, in ADNI 3 will perform all sequence types on all scanners/subjects to the extent possible time limits may not allow all experimental sequences Allow vendor WIPS (not site to site (i.e. Mayo) WIPS) Favor fragmented over standardized implementation of experimental sequences Fragmented using performance capability of high end systems TF-fMRI - multi band Siemens DTI - more diffusion encoding or 2 b-shell or comp SENSE DSI Standardized least common denominator ADNI 3 combinability: lo vs hi & x-vendors Core sequences 3D T1 volume (2X accel) – morphometrics YES FLAIR – CVD, pathology detection YES T2* GRE – MCH YES T2 FSE with fat sat – TIV, distortion correction YES Experimental sequences ASL – perfusion NO TF-fMRI – connectivity low end ?; high end MB NO DTI – diffusion low end simple FA/MD ?; high end DKI NO Coronal high res T2 – hippocampal subfields YES? ADNI 3 – next steps Identify candidate new sequences – DSI (MB, SENSE), Fe imaging, MB fMRI with short TR Work with vendors to identify WIPS needed by ADNI 3 start date encourage sites to obtain research agreements Pilots before grant due Tighten scanner eligibility? Plan specific cross modality analyses for MRI core in ADNI 3 grant application (vs free form)