Operators on Vector Fields of Genealogical Stemmata for Musical Performance Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org.
Download ReportTranscript Operators on Vector Fields of Genealogical Stemmata for Musical Performance Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org.
Operators on Vector Fields of Genealogical Stemmata for Musical Performance Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org Contents • Performance Fields • Cell Hierarchies • Algorithms and Calculations • Initial Performances • Operator Typology Fields H h X x= √(X) Fields √ E L T(E) = (d√E/dE)-1 [q /sec] pE I1 Ik E e l √E pe √E(I1) √E(Ik) e P-Cells X X0 √ F Z(X) = J(√ )(X)-1 D performance field, defined on cube F = the frame of Z X0 Œ I = initial set X0 = ÚXZ(t) ÚXZ = integral curve through X x= √(X) x0 D = (1,1,…,1) = Const. x0 = √I(X0) initial performance x = x0 - t.D P-Cells A Performance Cell C is a 5-tuple as follows • a closed frame F = [aE,bE] ¥[aH,bH] ¥... —Para, Para = {E,H,L,…} = finite set of symbolic parameters • a Lipschitz-continuous performance field Z, defined on a neighbourhood of F • a polyhedral initial set I, i.e., a finite union of possibly degenerate simplexes of any dimension in —Para • a finite set K —Para, the symbolic kernel, such that every integral curve ÚXZ through X Œ K hits I • an initial performance map √I:I —para (para = {e,h,l,…} physical parameters) such that for any X Œ K and two points √ I a = ÚXZ(a), b = ÚXZ(b), √I(b) - √I(a) = (a-b).D F K I Z P-Cells The category Cell of cells has these morphisms p: C1 C2 : • we have Para2 Para1 p: —Para1 —Para2 √I1 C1 K1 is the projection such that • • • I1 p(F1) F2 Z1 p p(I1) I2 √I2 p.√I1 = √I2 .pI1 • Tp.Z1 = Z2.p F1 C2 F2 K2 I2 Z2 Morphisms induce compatible performances P-Cells √I1 F1 K1 I1 √1 K1 √1(K1) Z1 p √I2 F2 K2 I2 Z2 K2 p √2 √2(K2) Product fields: Tempo-Intonation field P-Cells Z(E,H)=(T(E),S(H)) H EH E H S(H) T(E) E P-Cells Parallel fields: Articulation field ED Z(E,D) = T(E,D) = (T(E),2T(E+D)-T(E)) E D (e(E),d(E,D) = e(E+D)-e(E)) E T(E) P-Cells Work with Basis parameters E, H, L, and corresponding fields T(E), S(H), I(L) Pianola parameters D, G, C A cell hierarchy is a Diagram D in Cell such that • there is exactly one root cell • the diagram cell parameter sets are closed under union and non-empty intersection T ¥ S T ¥ I ¥ S T Root T ¥ I T¥ S T¥ I¥ S T S T¥ I I¥ S I Fundament Calculations RUBATO® software: Calculations via Runge-Kutta-Fehlberg methods for numerical ODE solutions Initials X = X0 = X(0) I t1 X1 = X(t1) Initials X0 I Xj (tk+tj)/2 ? Xk (tk+ti)/2 Xi x= Initials X q Q XQ Q Space(I) I √(X) xq Q Q Q Closure(Space(I)) Space(X) Typology mother T daughter T l granddaughter Z(T,l) Tl Stemma Typology Big Problem: Describe Typology of shaping operators! Emotions, Gestures, Analyses w(E,H,…) H E Tempo Operators Typology T(E) w(E) Tw(E) = w(E).T(E) Deformation of the articulation field hierarchy T Tw Z T Tw T Qw(E,D) = w(E) 0 w(E+D)—w(E) w(E+D) Qw = J(√w)-1 „w-tempo“ ? Zw Tw Zw = Qw(E,D).Z Typology Operator Types Qw Z T Zw T Tw T ? Z T The Lie Derivative Approach √(X,Y) = (x(X),y(X,Y)) √l(X,Y) = (x(X),l(X).y(X,Y)) Space(X) Space(Y) Space(X) Y Yl X X Y Typology J(√) = X Yl 0 y/X y/Y = A 0 B C A-1 J(√l)-1 = X x/X -C-1 BA-1 - l-1C-1.yƒdl.A-1 L= ln(l), DY=(1,…,1), eY = embedding of Y-tangent space YL= Y — [LX(L)C-1y-(e-L -1)C-1DY]eY 0 l-1C-1 Typology YL= Y —[LX(L)C-1y-(e-L -1)C-1DY]eY y = U.Y + v C-1 = U-1 L0 YL= Y — [LX(L)(Y+Const.)]eY YL= Y — LYX (L)(R.Y+C)eY eC.R: —Space(Y) —Space(Y) Typology The directed Lie derivative operator construction: • In the given hierarchy, choose a hierarchy space Z • select a weight Lon Z • choose any subspace S of the root space • select an affine directional endomorphism Dir S@S Given the total field Y, define the operator YL,Dir = Y — LYZ(L).Dir.eS Typology Theorem: For the deformation types T Qw Zw T Tw T ? Z T T¥ I T I ? Z T there is a suitable data set (Z,S,L,Dir) for the respective cell hierarchies such that the deformations are defined by directed Lie derivative operators YL,Dir = Y — LYZ(L).Dir.eS method of characteristics Typology RUBATO®: Scalar operator Linear action Qw on ED-tangent bundle Direction of field changes Numerical integration control