Performance and Interpretation Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org Fields.
Download ReportTranscript Performance and Interpretation Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org Fields.
Performance and Interpretation Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org Fields H h X x= √(X) Fields √ E L Zur Anzei ge wird der Qui ckTi me™ Dekompressor “GIF” benöti gt. I1 T(E) = (d√E/dE)-1 [q /sec] pE Ik E e l √E pe √E(I1) √E(Ik) e P-Cells X X0 √ F Z(X) = J(√ )(X)-1 D performance field, defined on cube F = the frame of Z X0 Œ I = initial set X0 = ÚXZ(t) ÚXZ = integral curve through X x= √(X) x0 D = (1,1,…,1) = Const. x0 = √I(X0) initial performance x = x0 - t.D Product fields: Tempo-Intonation field P-Cells Z(E,H)=(T(E),S(H)) H EH E H S(H) T(E) E P-Cells Parallel fields: Articulation field ED Z(E,D) = T(E,D) = (T(E),2T(E+D)-T(E)) E D (e(E),d(E,D) = e(E+D)-e(E)) E T(E) P-Cells A Performance Cell C is a 5-tuple as follows • a closed frame F = [aE,bE] ¥[aH,bH] ¥... —Para, Para = {E,H,L,…} = finite set of symbolic parameters • a Lipschitz-continuous performance field Z, defined on a neighbourhood of F • a polyhedral initial set I, i.e., a finite union of possibly degenerate simplexes of any dimension in —Para • a finite set K F, the symbolic kernel, such that every integral curve ÚXZ through X Œ K hits I • an initial performance map √I:I —para (para = {e,h,l,…} physical parameters) such that for any X Œ K and two points √ I a = ÚXZ(a), b = ÚXZ(b), √I(b) - √I(a) = (a-b).D F K I Z P-Cells The category Cell of cells has these morphisms p: C1 C2 : • we have Para2 Para1 p: —Para1 —Para2 √I1 C1 K1 is the projection such that I1 • p(F1) F2 Z1 • p(K1) K2 p • p(I1) I2c √I2 • p.√I1 = √I2 .pI1 • Tp.Z1 = Z2.p F1 C2 F2 K2 I2 Z2 Morphisms induce compatible performances P-Cells √I1 F1 K1 I1 √1 K1 √1(K1) Z1 p √I2 F2 K2 I2 Z2 K2 p √2 √2(K2) P-Cells Work with Basis parameters E, H, L, and corresponding fields T(E), S(H), I(L) Pianola parameters D, G, C A cell hierarchy is a Diagram D in Cell such that • there is exactly one root cell • the diagram cell parameter sets are closed under union and non-empty intersection T ¥ S T ¥ I ¥ S T Root T ¥ I T¥ S T¥ I¥ S T S T¥ I I¥ S I Fundament Typology mother T daughter T l granddaughter Z(T,l) Tl Stemma Typology Big Problem: Describe Typology of shaping operators! Emotions, Gestures, Analyses w(E,H,…) H E examples Java Classes for Modules, Forms, and Denotators RUBATO® L L S S Os X Calculations RUBATO® software: Calculations via Runge-Kutta-Fehlberg methods for numerical ODE solutions Tempo Operators Typology T(E) w(E) Tw(E) = w(E).T(E) Deformation of the articulation field hierarchy T Tw Z T Tw T Qw(E,D) = w(E) 0 w(E+D)—w(E) w(E+D) Qw = J(√w)-1 „w-tempo“ ? Zw Tw Zw = Qw(E,D).Z Typology RUBATO®: Scalar operator Linear action Qw on ED-tangent bundle Direction of field changes Numerical integration control Typology The directed Lie derivative operator construction: • In the given hierarchy, choose a hierarchy space Z • select a weight Lon Z • choose any subspace S of the root space • select an affine directional endomorphism Dir:S S Given the total field Y, define the operator YL,Dir = Y — LYZ(L).Dir.eS Typology Theorem: For the deformation types T Qw Zw T Tw T ? Z T T¥ I T I ? Z T there is a suitable data set (Z,S,L,Dir) for the respective cell hierarchies such that the deformations are defined by directed Lie derivative operators YL,Dir = Y — LYZ(L).Dir.eS method of characteristics performance J.S. Bach: Die Kunst der Fuge — Contrapunctus III Joachim Stange-Elbe Metrical and Motivic Weights act on agogics, dynamics, and articulation sopran score alt sum of all tenor bass Inverse Theory Restriction Lie type Affine transport Inverse Theory Inverse Theory Restriction Restriction Lie type Lie type Affine transport Sum Inverse Theory Lie operator parameters: weights, directions Output fields Z. Affine transport parameters fiber(Z.) Roberto Ferretti Inverse Theory The Topos of Music Geometric Logic of Concepts, Theory, and Performance in collaboration with Moreno Andreatta, Jan Beran, Chantal Buteau, Roberto Ferretti, Anja Fleischer, Harald Fripertinger, Jörg Garbers, Stefan Göller, Werner Hemmert, Mariana Montiel, Stefan Müller, Andreas Nestke, Thomas Noll, Joachim Stange-Elbe, Oliver Zahorka www.encyclospace.org