Geometry and the intrinsic Anomalous Hall and Nernst effects Wei-Li Lee, Satoshi Watauchi, Virginia L.
Download
Report
Transcript Geometry and the intrinsic Anomalous Hall and Nernst effects Wei-Li Lee, Satoshi Watauchi, Virginia L.
Geometry and the intrinsic
Anomalous Hall and Nernst effects
Wei-Li Lee, Satoshi Watauchi, Virginia L. Miller, R. J. Cava, and N. P. O.
Princeton University
1.
2.
3.
4.
Intro anomalous Hall effect
Berry phase and Karplus-Luttinger theory
Anomalous Nernst Effect in CuCr2Se4
Nernst effect from anomalous velocity
Supported by NSF
ISQM-Tokyo05
Anomalous Hall effect (AHE) in ferromagnet (CuCr2Se4: Br)
1.0
xy ( m )
x
7
10
5K
25
50
75
100
125
150
0.8
J
y
x = 0.85
0.6
25
50
75
100
125
150
175
4
3
225
0.0
0.0
10
5
200
0.2
5K
6
175
0.4
x = 1.0
xy ( m )
H
2
200
250
1
275
300
0.5
1.0
1.5
2.0
0
0.0
0.5
0H ( T )
0H ( T )
xy R0 H xy
1.0
xy Rs M
225
250
300
1.5
2.0
A brief History of the Anomalous Hall Effect
1890? Observation of AHE in Ni by Erwin Hall
1935 Pugh showed xy’ ~ M
1954 Karplus Luttinger; transport theory on lattice
Discovered anomalous velocity v = eE x .
Earliest example of Berry-phase physics in solids.
1955 Smit introduced skew-scattering model (semi-classical). Expts confusing
1958-1964 Adams, Blount, Luttinger
Elaborations of anomalous velocity in KL theory
1962 Kondo, Marazana Applied skew-scattering model to
rare-earth magnets (s-f model) but RH off by many orders of magnitude.
1970’s Berger Side-jump model (extrinsic effect)
1973 Nozieres Lewiner AHE in semiconductor. Recover Yafet result (CESR)
1975-85 Expt. support for skew-scattering in dilute
Kondo systems (param. host). Luttinger theory recedes.
1983 Berry phase theorem. Topological theories of Hall effect
1999-2003 Berry phase derivation of Luttinger velocity
(Onoda, Nagaosa, Niu, Jungwirth, MacDonald, Murakami, Zhang, Haldane)
Parallel transport of vector v on curved surface
Constrain v in local tangent plane; no rotation about e3
constraint
angle
Parallel transport
e3 x dv = 0
complex vectors
angular rotatn is a phase
ˆ (v i w) / 2
ψ
ˆ nˆ ei
ψ
v acquires geometric
angle relative to local e1
nˆ (e1 i e2 ) / 2
d nˆ id nˆ
Berry phase and Geometry
Change Hamiltonian H(r,R) by evolving R(t)
Constrain electron to remain in one state |n,R)
|n,R) defines surface
in Hilbert space
|n,R)
Parallel transport
i 0
n R ei
n R i n R
Electron wavefcn, constrained to surface |nR), acquires Berry phase
d R n R i n R
e(k)
Electrons on a Bravais Lattice 1
Constraint!
Bloch state
Confined to one band
nk (r) ei k .runk (r)
H e (k) e E . x
k
perturbation
k
| | nk ei
Drift in k space, ket acquires phase
Parallel transport
Adams
Blount
Wannier
n k | i | n k
d nˆ id nˆ
d k . X(k)
X k d x u n k i k u n k
3
cell
*
Berry vector potential
Semiclassical eqn of motion
E
H H 0 Vext
k
k-space
Vext causes k to change slowly
X(k) d 3 r u * n k i k un k
x=R
x = R + X(k)
Gauge transf.
H e (k) Vext (ik X(k))
Motion in k-space sees an effective magnetic field
Equivalent semi-class. eqn of motion
k X(k)
v ke (k) e E
x fails to commute with itself!
X(k)
x ik X(k)
[ x , x ] ie ijk ,
i
R
x
Karplus-Luttinger, Adams, Blount,
Kohn, Luttinger, Wannier, …
j
k
(X(k) = intracell coord.)
X(k)
In a weak electric field,
H H0 e E . x
v i[ H , x] k e (k) e E
(k) acts as a magnetic field in k-space,
a quantum area ~ unit cell.
Karplus Luttinger theory of AHE
Boltzmann eqn.
J 2e v k f gk
0
k
f k0
e E v t k
g k
e
k
Anomalous velocity
vk e k e E Ωk
Equilibrium FD distribution
Anomalous Hall current
f k0
(B = 0)
contributes!
J H 2e E f Ωk
2
Berry curvature
0
k
k
1. Independent of lifetime t
(involves f0k)
2. Requires sum over all k in Fermi Sea.
but see Haldane (PRL 2004)
3. Berry curvature
Ωk
vanishes if time-reversal symm. valid
e2
xy ' n
In general,
xy = xy2
• Luttinger’s anomalous velocity theory
’xy indpt of t a xy ~ 2
• Smit’s skew-scattering theory
’xy linear in t
KL theory
a xy ~
e2
xy ' n
Ferromagnetic Spinel CuCr2Se4
Cu
O
180o bonds: AF
(superexch dominant)
Se
Cu
Cr
90o
bonds: ferromag.
(direct exch domin.)
Goodenough-Kanamori rules
Anderson, Phys. Rev. 115, 2 (1959).
Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
Goodenough, J. Phys. Chem. Solids 30, 261 (1969)
Effect of Br doping on magnetization
450
3.0
350
2.5
300
2.0
M ( B / Cr)
TC ( K )
400
250
200
150
100
50
5K
CuCr2Se4-xBrx
1.5
x = 1.0
x = 0.85
x = 0.5
x = 0.25
x=0
1.0
0.5
CuCr2Se4-xBrx
0
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0
X
• Tc decreases slightly as x increases.
• At 5 K, Msat ~ 2.95 B /Cr for x = 1.0
• doping has little effect on ferromagnetism.
1
2
3
4
0H ( T )
5
CuCr2Se4-xBrx
1.0
7
x = 1 (A)
10
CuCr2Se4-xBrx
6
1 (B)
0.8
5
-3
nH ( 10 cm )
0.6
1
21
( m cm )
0.85 (B)
0.5 (A,B)
0.25
0.1
0.6
4
3
0.4
2
0.1
0
0.2
1
0.01
0
50
100
150
200
T( K )
250
300
0
0.0
0.2
0.4
0.6
X
• At 5 K, increases over 3 orders as x goes from 0 to 1.0.
• nH decreases linearly with x. nH 2 1020 cm3 , for x =1.0.
0.8
0.0
1.0
nH ( per F.U. )
0.85 (A)
0.01 x = 0.25
300 K
0.00
250
225
0.10
0.08
xy ( m )
xy ( m )
175
150
-0.02
125
-0.03
100
75
-0.04
100-150 K
5-50
200
-0.01
x = 0.6
200
0.06
225
0.04
250
275
0.02
5-50
-0.05
0.0
0.5
1.0
1.5
300
2.0
0H ( T )
• x = 0.25, negative AHE at 5K.
• x = 0.6 , positive AHE at 5K.
0.00
0.0
0.5
1.0
0H ( T )
1.5
2.0
x = 0.85
25
50
75
100
125
150
0.8
xy ( m )
7
10
5K
0.6
25
50
75
100
125
150
175
4
3
225
0.0
0.0
10
5
200
0.2
5K
6
175
0.4
x = 1.0
xy ( m )
1.0
2
200
250
0.5
1.0
1.5
225
250
300
1.5
2.0
1
275
300
2.0
0H ( T )
• Large positive AHE, at 5K,
0
0.0
0.5
1.0
0H ( T )
xy 700 m , x = 1
.
x=0
0.025
0.020
x = 0.1
350 K
350 K
300
300
xy ( m )
0.020
250
0.015
5
50
xy ( m )
0.015
250
0.010
0.005
200
0.010
275
225
50
5
200
0.000
0.005
100
0.000
0.0
0.5
150
1.0
1.5
-0.005
0.0
2.0
0H ( T )
• x=0 , AHE unresolved below 100K.
• x=0.1, non-vanishing negative AHE at 5 K.
100 150
0.5
175
1.0
0H ( T )
1.5
2.0
Wei Li Lee et al. Science (2004)
e2
xy ' n
If ’xy ~ n,
then
’xy /n ~ 1/(nt)2
~ 2
Fit to ’xy/n = A2
Observed A implies
<>1/2 ~ 0.3 Angstrom
• impurity scattering
regime
xy' / nH A , 1.95 0.08
'
xy
/ nH A
• 70-fold decrease in t,
from
x = 0.1 to x =
0.85.
• xy/n is independent of
t
• Strongest evidence to
date for the anomalousvelocity theory
Doping has no effect on anomalous Hall current JH per hole
E
JH (per carrier)
M
J (per carrier)
Bromine
dopant
conc.
With increasing disorder,
J decreases, but AHE JH is constant
Anomalous Nernst Effect
Ey/|
xT |
= Q0 B + QS 0M
QS, isothermal anomalous Nernst coeff.
z
x
Vy
y
Ey
xT
xT
H
H
I0
Longitudinal and transverse charge currents in applied gradient
J . E .(T )
Total charge current
eN Ey / | T | xy xy
xy eN S tan H
Nernst signal
Final constitutive eqn
Measure , eN, S and tanH to determine xy
xT
z
x
E
y
H
(T )
x= 0.6
10
Ey / grad.T ( V / K )
5K
Ey / grad.T ( V / K )
0.0
x = 0.25
25
-0.5
-1.0
75
125
0.0
1.0
75
100
125
150
200
0.5
50
-1.5
150
175
-2.5
10
25
-1.0
100
-2.0
5K
-0.5
50
-1.5
0.0
1.5
0H ( T )
2.0
-2.0
0.0
175-200
0.5
1.0
1.5
0H ( T )
2.0
Wei Li Lee et al. PRL (04)
0.2 x = 0.85
10
0.0
5K
-0.2
25
-0.4
50
-0.6
75
-0.8
100
-1.0
125
-1.2
-1.4
150
-1.6
175
200
-1.8
-2.0
0.0
0.5
1.0
1.5
0H ( T )
x = 1.0
0.0
Ey / grad.T ( V / K )
Ey / grad.T ( V / K )
0.2
-0.2
-0.4
-0.6
-0.8
-1.0
15
350
25
50
75
300
100
125
250
150
175
225
-1.2
2.0
0.0
200
0.5
1.0
0H ( T )
1.5
2.0
Nernst effect current with Luttinger velocity
J y yx ( xT )
ks
vk e k e E Ωk
Leading order
In E and (-grad T)
(e k ) f
v l
T e k
(KL velocity term)
xy
ks
(e k ) f
vx k x z
T e k
2
2 ekB T 2 e N
xy
3 3 e F
1.
2.
3.
Dissipationless (indpt of t)
Spontaneous (indpt of H)
Prop. to angular-averaged
NF
Peltier
tensor
eN non-monotonic in x
xy decreases monotonically with x
Wei Li Lee et al. PRL (04)
3D density of states
Empirically,
xy = gTNF
ekB 2T
NF
xy A
A = 34 A2
Comp. with Luttinger result
2
2 ekB T 2 e N
xy
3 3 e F
NF
Wei Li Lee et al. PRL (04)
Summary
1. Test of KL theory vs skew scattering in
ferromagnetic spinel CuCr2Se4-xBrx.
2. Br doping x = 0 to 1 changes r by 1000 at 5 K
’xy = n A 2
3. Confirms existence of dissipationless current
Measured <>1/2 ~ 0.3 A.
4. Measured xy from Nernst, thermopower and Hall angle
Found xy ~ TNF,
consistent with Luttinger velocity term
End
Parallel transport of a vector on a surface (Levi-Civita)
e transported without twisting about normal r
= 2(1-cos)
cone flattened on a plane
Parallel transport on C :
e.de = 0
de normal to tangent plane
r
e acquires geometric angle
2(1-cos) on sphere
(Holonomy)
e
de
Generalize to complex vectors
Local tangent
plane
Local coord.
frame (u,v)
e.de = 0
Parallel transport
ˆ * ˆ 0
i nˆ * nˆ
i nˆ * nˆ
Geometric phase
i)
arises from rotation of local coordinate frame,
ii)
is given by overlap between n and dn.
Nernst effect from Luttinger’s anomalous velocity
i
j
k
[ x , x ] ie ijk , X(k)
vk e k e E Ωk
In general,
Since
we have
k B 2T xy
xy
e
e
xy
e
NF
ekB 2T
NF
xy A
Area A is of the order of ~ DxDy ~ 1/3 unit cell section
Atom
Electron on lattice
H H N (R) He (r,R) Hint
(r,R) N (R) n R (r)
R
r
A n R | iR | n R
Beff A
Hamiltonian
Product wave fcn
slow variable
fast variable
Berry gauge potential
“magnetic” field
H (1/ 2M )[iR e A]2 V (R)
effective H
H H 0 Vext
nk (r) ei k .runk (r)
k
r in cell
X(k) d 3 r u * n k i k un k
k X(k)
H Vext (ik X(k)) e (k)
e(k)
Electrons on a Bravais Lattice 1
Constraint!
Bloch state
Adams
Blount
Wannier
Confined to one band
nk (r) e
i k .r
k
unk (r)
k
Center of wave packet
Wannier coord.
X(k)
R ik
x R Xk
within unit cell
X k d 3 x u n k i k u n k
R
x
*
cell
Berry vector potential
Berry phase in moving atom
product wave fcn
H H N (R) H e (r,R)
(r,R) N (R) n R (r)
Nuclear R(t) changes gradually but electron constrained to stay in state |n,R)
G
Electron wavefunction acquires Berry phase
ei B
R
B d R . A
G
A n R | iR | n R
Integrate over fast d.o.f.
H (1/ 2M )[iR e A]2 V (R)
G
Beff
Beff A
(Berry curvature)
R
Nucleus moves in an effective field
Nucleus moves in closed path R(t), but
electron is constrained to stay at eigen-level |n,R)
G
Electron wavefcn acquires Berry phase
R
gexp(iB)
B d R . A
G
Constraint + parameter change
A n R | iR | n R
connection
Beff A
curvature
Berry phase, fictitious Beff field on nucleus
• Boltzmann transport Eq. with anomalous velocity term.
e k
J 2 e[ eE ][ f k0 g k ] d 3 k ,
k
f k0
t e (T ) , and use E k x xˆ ,
g k
e k T
t
k
keep term linear in (T ) ,
f k0 e
3
]d k
)
T
(
Z [t
J y 2 e
k
t
e k T
2
kx
f k0
[ Z 2 (e ) ] de dS ,
yx
e k , x
ke
k
use Sommerf eld expansion,
2e 2
mT
xy C n T
w hereC is const., n is carrier concentration and T is temperature.
Electrons on a lattice 3
x ik X(k)
[ xi , x j ] ie ijkk ,
X(k)
(
~
Bk
)
1. (k) -- a “Quantum area” -- measures uncertainty in x; (k)~ DxDy.
In a weak electric field,
H H0 e E . x
v i[ H , x] k e (k) e E
2. (k) is an effective magnetic field in k-space (Berry curvature)
Nozieres-Lewiner theory
J. Phys. 34, 901 (1973)
•Anomalous Hall effect in semiconductor with spin-orbit coupling
• Enhanced g factor and reduced effective mass
g * ~ 1 / e g , m* ~ e g
r R X(k)
X(k) SO k S, where SO (1/ e g )2
•Anomalous Hall current JH
J H 2ne2 SO E S
Dissipationless, indept of t
Electrons on a Lattice 2
Eqns. of motion?
k e E e v B
B A
k k Xk
vk e k e E Ωk
Berry potential
Berry curvature
X(k) a funcn. of k
E
k = 0 only if
Time-reversal symm.
or parity is broken
Predicts large Hall effect in lattice with broken time reversal
Karplus Luttinger 1954, Luttinger 1958
-0.2
50
25
75
5 K 10
100
-0.4
125
-0.6
150
-0.8
-1.0
175
-1.2
200
-1.4
225
-1.6
0.0
0.5
1.0
0.2
x = 0.1
5 K 10
0.0
25
-0.2
50
-0.4
75
-0.6
100
125
-0.8
150
-1.0
-1.2
175
-1.4
200
225
-1.6
250
-1.8
275
Ey / grad.T ( V / K )
Ey / grad.T ( V / K )
0.2 x = 0
0.0
300
1.5
0H ( T )
2.0
0.0
0.5
1.0
1.5
0H ( T )
2.0
Wei-Li Lee et al., PRL 2004
3
e k
0
3
J 2 ek f k d k 2 e[ eE ][ f k g k ] d k ,
k
keep term linear in E,
0
J H 2e d k f k [ E ],
3
2
0
J H 2e E [ d k f k ] ,
use - k S, k 2S,
2
3
JH 2ne E S
2
1400
800
3
-8
3
x = 1.0 (A)
15
10
1.0 (B)
600
0.5 (A)
0.5 (B)
5
0
0
400
0.85 (B)
200
0
x = 0.6
20
-8
1000
Rs ( 10 m /C )
1200
Rs ( 10 m /C )
25
CuCr2Se4-xBrx
0.85 (A)
0
50 100 150 200 250 300
0.1
-5
0.25
-10
0
50 100 150 200 250 300
T( K )
T( K )
• Rs chanes sign when x >0.5.
• |Rs| increases by over 4 orders when varying x.
• Rs(T) is not simple function or power of (T) .
-0.6
x=1
x = 0.85
x = 0.6
x = 0.25
x = 0.1
x=0
-4
QS ( V/K-T )
x=1
x = 0.85
x = 0.6
x = 0.25
x = 0.1
x=0
CuCr2Se4-xBrx
-3
-0.4
xy ( V/K--m )
-5
-2
-0.2
-1
0.0
0
0
50
100
T(K)
• Qs same order for all x,
• xy linear in T at low T.
150
0
50
100
T(K)
Wei-Li Lee et al., PRL 2004
150