Diferensial Fungsi Majemuk -Diferensial Parsial - Diferensial Total - Chain rule - dll 1. y f ( x , z ) y a ) f ( x , z ) x x y' y b )
Download ReportTranscript Diferensial Fungsi Majemuk -Diferensial Parsial - Diferensial Total - Chain rule - dll 1. y f ( x , z ) y a ) f ( x , z ) x x y' y b )
Diferensial Fungsi Majemuk -Diferensial Parsial - Diferensial Total - Chain rule - dll 1. y f ( x , z ) y a ) f ( x , z ) x x y' y b ) f x ( x , z ) z y y dy dx dz x z 2. p f ( q , r , s ) p a ) f ( q , r , s ) q q p p ' b) f r ( q, r , s ) r c ) f ( q, r , s ) p s s p p p dp dq dr ds q r s Diferensial Parsial Diferensial Total High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan lebih dari satu kali Turunan parsial z = f (x,y) kalau kontinyu dapat mempunyai turunannya sendiri. empat turunan parsial : f f f f , , , dan 2 2 x xy yx y 2 2 2 2 • Dapat dilambangkan fxx, fxy, fyx, dan fyy • fxy = fyx Partial derivatives Cobb-Douglas production function (+=1) Q = 96K0.3 L0.7 Q 0.7 0.7 0.7 0.7 MPP K 0.396 L K 28.8L K K Q 0.3 0.3 0.3 0.3 MPP L 0.7 96 K L 67.2 K L L Market model Qd a bP a, b 0 Qs c dP c, d 0 ac P bd ad bc Q bd Techniques Qd bP a Q dP C s 1 b Q a 1 d P c 1 a Ap 1 c c a a c P 1 b A d b b d 1 d of partial differentiation • Market model a, b 0 Qd a bP Qs c dP c, d 0 ac P bd P a P c P b 1 0 bd 1 0 bd a c 0 2 b d a c Geometric interpretation of partial derivatives 0 2 d b d P • Market model Qd a bP a, b 0 Qs c dP c, d 0 ad bc Q bd Q a Q c Q b d 0 bd b 0 bd d a c 0 2 b d ba c 0 2 d b d Q Qd a bP Qs c dP Q S0 a, b 0 c, d 0 Q S S1 D1 D P Q b 0 c b d D P P 1 0 a b d Qd a bP Qs c dP Q a, b 0 c, d 0 S1 Q S0 S0 D P Q0 Q1 D1 D0 P Q d a c model 0 Market 2 b b d P a c 0 2 d b d Y = C + I0 + G 0 C = a + b(Y-T); T=d+tY; b = MPC t = MPT (a > 0; 0 < b < 1) (d > 0; 0 < t < 1) Y=( a-bd+I+G)/(1-b+tb) C=(b(1-t)(I+G)+a-bd)/ (1-b+tb) T=(t(I+G)+ta+d(1-b))/ (1-b+tb) Y 1 Go 1 b bt C b(1 t ) Go 1 b bt National-income model T t Go 1 b bt Input-output model x1 b11 b12 d1 x b d 2 21 22 2 x1 b11 d 1 x b d 2 21 2 b12 d 1 b22 d 2 ∂x1/∂d1 = b11 x1 x1 d1 x1 d 2 d1 x x d x d d 1 2 2 2 2 2 Use Jacobian determinants to test the existence of functional dependence between the functions /J/ Not limited to linear functions as /A/ (special case of /J/ If /J/ = 0 then the non-linear or linear functions are dependent and a solution does not exist. y1 x1 y1 x2 Note on JJacobian y 2 x1 Determinants y 2 x2 y y dy dx1 dx2 x1 x2 dy f1dx1 f 2 dx2 Total Differentials Diferensial T otaldy dari y f(x,z) didefinisikan sebagai : dy lim f ( x x, z z ) f ( x, z ) x 0 y 0 ditambahkan f (x,z z ) ( x, z z ) 0 f ( x x, z z ) f ( x, z z ) dy lim x x x 0 f ( x, z z ) f ( x, z ) y lim y y 0 df df dx dz dx dz f f y y dx dz atau dy dx dz x z x z Diferensial Total Let Utility function U = U (x1, x2, …, xn) Differentiation of U wrt x1..n U/ xi is the marginal utility of the good xi dxi is the change in consumption of good xi U U U dU dx1 dx2 dxn x1 x2 xn • Given a function y = f (x1, x2, …, xn) • Total differential dy is: y y y dy dx1 dx2 dxn x1 x2 xn dy f1dx1 f 2 dx2 ... f n dxn • Total derivative of y with respect to x2 found by dividing both sides by dx2 (partial total derivative) dxn dy dx1 f 2 from f n the differential Finding thef1 totalderivative dx2 dx2 dx2 Chain rule (kaidah rantai) dz dz dy f y g x dx dy dx This is a case of two or more differentiable functions, in which each has a distinct independent variable. where z = f(g(x)), i.e., z = f(y), i.e., z is a function of variable y and y = g(x), i.e., y is a function of variable x • If R = f(Q) and if Q = g(L) dR dR dQ f Q g L MR MPPL MRPL dL dQ dL dy dy du dx du dx y f (u ) dan u f ( x), dy / dx diperolehdengan mendiferensialkan y ke u dan u ke x serta mengalikanhasilnya. Kalau z z ( x, y ) dan x x(t ) dan y y(t) z z dz dx dy x y sehingga dz z dx z dy dt x dt y dt z x Kaidah Rantai y t Pohon rantai Kaidah Rantai Kalau w = w(x,y,z) dan x = x(u,v), y = y(u,v), dan z = z(u,v), maka pohon rantai : w sehingga: x y u z v w w x w y w z u x u y u z u dengan rumus serupa untuk w / v Kalau z = z(x,y), dan x = x(s), y = y(s), dan s = s(u,v), maka pohon rantai menjadi z: y x s u v z z dx z dy s u x ds y ds u dengan rumus serupa unt uk z / v