Transcript Slide 1

d

dx

 1  

d

2

v dx

2 

M EI

For small deflections

EI d

4

v dx

4  

w

 

d

3

v EI dx

3 

V EI d

2

v dx

2 

M

Load Equation Shear Equation Moment Equation Integrate 4 times to find v(x) Integrate 3 times to find v(x) Integrate 2 times to find v(x)

For each integration there will be a constant of integration. These constants can often be found by applying boundary, continuity or symmetry conditions.

Boundary conditions (see left) Continuity conditions

At the connection of two regions of integration the deflection curve is physically continuous.

Symmetry conditions

The cantilevered beam is subjected to a vertical load

P

at its end. Determine the equation of the elastic curve. EI is constant.

M

 

Px

EI d

2

v

 

Px dx

2

EI dv dx

 

Px

2 2 

C

1

EIv

   

Px

3 6 

C

1

x

C

2

The cantilevered beam is subjected to a vertical load

P

at its end. Determine the equation of the elastic curve. EI is constant.

0  

PL

2 2 

C

1 

C

1 

PL

2 2 0  

PL

3 6 

C

1

L

C

2 

C

2  

PL

3 3 dv/dx is 0 at x=L v is 0 at x=L  

P

2

EI

L

2 

x

2  ;

v

P

6

EI

 

x

3  3

L

2

x

 2

L

3 

Determine the maximum deflection of the beam. EI is constant Sketch the elastic curve

M

1 

P x

1 3

M

2 

P x

2 3 

P

x

2  2

a

  2

P

 3

a

x

2  3

M 1

EI d

2

v

1

dx

1 2 

P x

1 3

dv EI dx

1 1 

P x

1 2 6 

C

1

EIv

1 

Px

1 3 

C

1

x

1 

C

2 18

Boundary Conditions

v 1 =0 at x 1 =0; v 2 =0 at x 2 =3a

M 2

EI d

2

v

2

dx

2 2

EI dv dx

2 2  2

P

3  3

a

x

2   2

P

3   3

ax

2 

x

2 2 2   

C

3

EIv

2  2

P

3   3 2

ax

2 2 

x

2 3 6   

C

3

x

2 

C

4

Continuity Conditions

dv 1 /dx 1 = dv 2 /dx 2 at x 1 =2a and v 1 =v 2 at x=2a

dv

1

dx

1 

P

6

EI x

1 2  4

Pa

2 9

EI dv dx

2 2  2

Pa x

2

EI

P

3

EI x

2 2  22

Pa

2 9

EI v

1 

P

18

EI x

1 3  4

Pa

2 9

EI x

1

v

2 

P EI x

2 2 

P

9

EI x

2 3  22

Pa

2 9

EI x

2  4

Pa

3 3

EI

Maximum occurs between A&B when slope is 0

dv

1

dx

1  0 

P x

1 2 6  4

Pa

2 

x

1 9  1 .

633

a v

max   0 .

484

Pa

3

EI

Determine the equations of the elastic curve using the x 1 and x 2 coordinates. EI is constant.