Modeling and Simulation of Global Structure of Urban Boundary Layer Kurbatskiy A.

Download Report

Transcript Modeling and Simulation of Global Structure of Urban Boundary Layer Kurbatskiy A.

Modeling and Simulation of Global
Structure of Urban Boundary Layer
Kurbatskiy A. F.
Institute of Theoretical and Applied Mechanics of
SB RAS, Novosibirsk, Russia
CITES 2005, Novosibirsk
O U T L I N E:
 Motivation
 Introduction
 Urban Boundary Layer
 Improved Model for the Turbulent ABL
 Urban Heat Island in a Calm
and Stably Stratified Environment
 Impact of UHI on the Global Structure of the ABL
 Impact of the UHI and the UCL on the ABL Structure
 Conclusions
CITES 2005, Novosibirsk
Motivation
The aim of lecture consists in a statement of the improved
turbulence model for the urban boundary layer and results
of its verification in the simple 2D cases.
CITES 2005, Novosibirsk
Introduction
●Complexity of simulation of urban air quality
problems consists in the necessary of resolution
the variety spatial-temporal scales over which
the phenomena proceed.
●The two most important scales include:
 an 'urban' scale of a few tens kilometers (a
typical scale of city) where large amounts of
contaminants are emitted, and
 a 'меsо' scale of a few hundreds of kilometers
where secondary contaminants are formed and
dispersed.
CITES 2005, Novosibirsk
Introduction
● In order to compute the mean and turbulent
transport and the chemical transformations of
pollutants, several meteorological variables, such as
wind, turbulent fluxes, temperature etc., it is
necessary to known as more as possible precisely.
These meteorological variables can be calculated by
an improved model for the turbulent ABL.
● The two most important effects of the urbanized
surface have an influence on the air flow structure:
Differential heating of the urbanized surfaces which
can generate the so-called urban heat island effect.
Drag due to buildings.
CITES 2005, Novosibirsk
The development of ABL over flat terrain
The potential temperature θ and wind velocity U are shown for
the convective and stable boundary layers.
CITES 2005, Novosibirsk
Urban Boundary Layer
CITES 2005, Novosibirsk
Improved Turbulence Model
for the ABL
CITES 2005, Novosibirsk
GOVERNING EQUATIONS FOR TURBULENT PBL
DU i

1 P
   ij  gi 
 2 ijk  jU k ;
Dt
x j
 xi
D


hj ,
Dt
x j
.
τij  < u i u j > is th e Reynolds stress
hi  < uiθ > is the heat f lux
CITES 2005, Novosibirsk
Turbulence equations
Reynolds stress, ij  u i u j 
D
 ij  Dij  Pij   i h j   jh i  П ij   ij
Dt



Пij  ui
p
p
2

  u j
   ij
 puk 
x j
xi
3 xk
 
2

  u i u j u k    ij  puk  
x k 
3

 ij  2 
u i u j
2
   ij
x k x k
3
U j

U i
Pij   ik
  jk
x k
x k

Dij 
 i   gi
Heat flux, hi uiθ
Dh i
U i

h
2
 Di   h j
  ij
  i    П i ,
Dt
x j
x j
Пi  

p
ui u j 
 , Dih 
x j
xi
CITES 2005, Novosibirsk
An updated expressions for the pressurevelocity Пij (= Пij(1)+ Пij(2)+ Пij(3)) and the
pressure-temperature
Пiθ (= Пiθ(1)+ Пiθ(2)+ Пiθ(3)) correlations
 Mellor-Yamada model (1982, Mellor, 1973):
Пij(1)=Cτ-1bij
Пij(2)~-ESij  most of rapid terms are neglected
Пij(3)=0  no buoyancy effects are included
Пiθ(1)=C1θhi, Пiθ(2)=0, Пiθ(3)=C3θβ<θ2>,
(E=1/2<uiui> is TKE; Sij=(Ui,j+ Uj,i)/2)
CITES 2005, Novosibirsk
An updated expressions for the pressure-velocity
Пij (= Пij(1)+ Пij(2)+ Пij(3)) and the pressure-temperature
Пiθ (= Пiθ(1)+ Пiθ(2)+ Пiθ(3)) correlations
Launder’s model (1975)

Present model (2001)
Пij(1)= C1τ-1bij
Пij(2) =-4/3C2ESij - C2(Zij+Σij)
Пij(3) = C3Bij
Пiθ(1) = C1θ τ -1hi ,
Пiθ(2) =-C2θhjUi,j ,
Пiθ(3) = C3θβi<θ2>
Zeman and Lumley model (1979)

Canuto et al. model (2002)
Пij(1)= C1τ-1bij
Пij(2)=-4/5ESij - α1Σij- α2Zij
Пij(3) =(1-β5)Bij
Пiθ(1) = C1θ τ -1hi ,
Пiθ(2) =-3/4α3(Sij+5/3Rij) hj ,
Пiθ(3) =γ1βi<θ2>
Σij=bikSij+Sikbkj-2/3δijbkmSmk;
Zij=Rikbkj-bikRkj; Bij=βihj+ βjhi- 2/3δijβkhk

The model constants of Пij are
C1, C2, C3, C1θ, C2θ= C3θ
CITES 2005, Novosibirsk
Level-3 Algebraic Models for Reynolds
Stress and Scalar Fluxes


D
4
b ij  Dij  0   ESij   ij   ij  Bij  П ij
Dt
3
Dh i
U i

h
 Di  0   h j
  ij
  i  2   П i ,
Dt
x j
x j
Coupled algebraic system equations for

ui u j 
and

h i  u i :
 bij  1E Sij   2  ij   ij   3Bij
2
 

2
 A ijh j    b ij   ijE 
  4  g i3  
3

 x j
CITES 2005, Novosibirsk
Level-3 Fully Explicit Algebraic Models for
Reynolds Stress and Scalar Fluxes : 2D case

 U V  KM  E SM 
  uw ,  vw     KM  ,  K  E S
H
 z z  H

1 2 2


2


1


G

s
G

(

g
)



 w   K H
c c

2 M
6 H 5
D 3

z
GH   N 
2
GM   S 
2

E

 2  U 2  V 2
N  g
S    
z
 z   z 
2

1 2 1
1  s0 1  s1GH s2  s3GH   s4 s5 
SM  
1  s6GH  
 SH  
2
D  1  s6 GH   g   / E
D  3 c1




D  1  d1G M  d 2G H  d 3G M G H d 4G 2H  (d 5G 2H  d 6G M G H ) G H
CITES 2005, Novosibirsk
Three-parametric turbulence model
 Turbulentkinetic energy(TKE), E  (1/ 2)ui ui :
U i
DE 1
 Dii   ij
  i hi   ,
Dt 2
x j
1
  c  E 2 E 


Dii  
2
x i   E  x i 
TKE dissipation, 
D

 D    ,
Dt
E
2
   0 1
b ij U i
 x j
 2
i
2E U i
hi  3 j
h
,

 i x j
bij  uiu j   2 / 3ij E D   / x j u j 
Temperature variance ,  2  :
D 2 

 D 2  2h i
 2  ,
Dt
x i
CITES 2005, Novosibirsk
  c  E 2 a 


Da  
x i   a  x i 
a   ,  2 


2
    / x j 2       ,



2R E
2
D   / xi ui 2  R      

2 E
Air Circulation
above an Urban Heat Island
in a Calm and Stably
Stratified Environment
CITES 2005, Novosibirsk
Air Circulation above an Urban Heat Island
CITES 2005, Novosibirsk
Thermal circulation above an urban heat island
Experiment
of Lu et al.
(JAM.1997.V.36)
Computation by
three-parametric
turbulence model
(Kurbatskii A. JAM.
2001. V.40)
CITES 2005, Novosibirsk
33
33
3 2 .5
32 .5
1.5
32
32 .5
32
32
3 1 .5
3 1 .5
31
31
3 0 .5
30
1
30
30
29 .5
29
2 9 .5
Z / Zi
3 0 .5
.5
29
29
29
29
28.5
28 .5
28.5
28
28
28.5
28
0.5
27 .5
29
2 7.5
27
27
2 6 .5
26 .5
26
28
29
.5
29
26
30
0
-1.5
-1
-0.5
0
0.5
1
1.5
r/D
(A. F. Kurbatskiy, J. Appl. Meteor. 2001. V. 40. №10)
CITES 2005, Novosibirsk
Dispersion of passive tracer above UHI
in a Calm and Stably Stratified Environment
1.5
5
0.0
0.15
0.1
Z / Zi
1
0.05
5
0.20
0.20
0.5
0.15
0.10
0.10
-1.5
-1
-0.5
0
r/D
0.5
CITES 2005, Novosibirsk
0.15
1
1.5
Impact of a Urban Heat Island
on
the Global Structure of the ABL
CITES 2005, Novosibirsk
2D case: Computational domain
Z , km
5
Synoptic flow
wind
0
45
urban heat island
CITES 2005, Novosibirsk
55
120
X, km
Vertical section of horizontal wind speed (UG=1ms-1)
1.5
1.0
-1.0
1.0
Z, km
1.0
1.0
0.0
0
1.
1.0
0.0
1.5
2.0
0.0
2.0
-0.
5
.0 5
-1 -1. -2.0
U G=1 m/s
at 1200 LST
-2.
5
1.5
0
1.5
-0.5
1
0.5
2.5
1.0
1.5
2.
0
-1.5
3.0
1.0
-0.5
0
-1. .0
0
2
0
1.
1.0
1.0
1.0
1.0
1.0
1.0
2.5
40
60
X, km
CITES 2005, Novosibirsk
Vertical section of potential temperature and horizontal wind speed
a )-1
U(
=3ms
G
8.5
8.0
7.5
7.0
3.5
3.
3
3.0
3.0
2.8
1
2.
3
60
4.0
80
100
120
20
X (km)
0.8
60
40
c )
UG(=5ms
7.5
7.0
7.5
7.0
6.5
6.0
4.0
4.8
4.2
3.9
Z (km)
Z (km)
120
2.1
3.3
X (km)
80
4.2
3.9
20
2.73.0
2.4
40
4.8
4.5
3.6
3.3
4.0
3.5
4.8
3.9
3.5
100
1
5.
4.2
3.6
20
.5
3.5 45.0
40
60
UG=5 ms-1
4.5
4.5
0.5
3.5
4.0 4.5
3.0
1
3.0
3.0
0.5
4.0
3.5
4.5
3.5
5
3.
5.4
4.8
1.5
4.5
4.0
3.0
-1
2
5.5
5.0
5
4.
5.5
5.0
4.5
1
120
5.1
6.5
6.0
1.5
100
8.0
8.0
27.0
UG=5ms
2.5
8.5
8.5
80
X (km)
-1
2.5
1.8
2.3
4.5
5.0
3.5
4.0
1.8
2.8
3.3
40
0.5
2.3
UG=3 ms-1
3.0
20
3.5
4.5
3.5
2.8
4.0
0.5
2.8
2.
3
4.0
4.0
3.9
3.6
Z (km)
1.5
4.5
3.5
1
3.3
4.5
3.8
2.8
5.5
5.0
5.0
3.0
1.5
2.8
6.0
6.0
5.5
3.0
2
6.5
2.3
2
1.8
8.0
7.5
7.0
6.5
3.0
8.5
( b-1 )
UG=3ms
2.5
Z (km)
2.5
3.3
3.0
2.7
1.8
60
X (km)
80
2.4
2.1
100
120
Velocity vectors and isotachs of vertical speed at 12:00 LST
2
UG=3 ms-1
1.5
0.7
-0.1
0.2
1.0
Z, km
0.5
.1
-0
1
-0.2
0.5
0
40
50
X ,km
CITES 2005, Novosibirsk
60
Vertical section of potential temperature and horizontal wind speed
a )-1
U(
=3ms
G
8.5
8.0
7.5
7.0
3.5
3.
3
3.0
3.0
2.8
1
2.
3
60
4.0
80
100
120
20
X (km)
0.8
60
40
c )
UG(=5ms
7.5
7.0
7.5
7.0
6.5
6.0
4.0
4.8
4.2
3.9
Z (km)
Z (km)
120
2.1
3.3
X (km)
80
4.2
3.9
20
2.73.0
2.4
40
4.8
4.5
3.6
3.3
4.0
3.5
4.8
3.9
3.5
100
1
5.
4.2
3.6
20
.5
3.5 45.0
40
60
UG=5 ms-1
4.5
4.5
0.5
3.5
4.0 4.5
3.0
1
3.0
3.0
0.5
4.0
3.5
4.5
3.5
5
3.
5.4
4.8
1.5
4.5
4.0
3.0
-1
2
5.5
5.0
5
4.
5.5
5.0
4.5
1
120
5.1
6.5
6.0
1.5
100
8.0
8.0
27.0
UG=5ms
2.5
8.5
8.5
80
X (km)
-1
2.5
1.8
2.3
4.5
5.0
3.5
4.0
1.8
2.8
3.3
40
0.5
2.3
UG=3 ms-1
3.0
20
3.5
4.5
3.5
2.8
4.0
0.5
2.8
2.
3
4.0
4.0
3.9
3.6
Z (km)
1.5
4.5
3.5
1
3.3
4.5
3.8
2.8
5.5
5.0
5.0
3.0
1.5
2.8
6.0
6.0
5.5
3.0
2
6.5
2.3
2
1.8
8.0
7.5
7.0
6.5
3.0
8.5
( b-1 )
UG=3ms
2.5
Z (km)
2.5
3.3
3.0
2.7
1.8
60
X (km)
CITES 2005, Novosibirsk
80
2.4
2.1
100
120
Height of boundary layer
2.5
Height of boundary layer
at 1200 LST
2
Z (km)
1.5
1
1
1-U G =1m/sec
2
3
2-U G=3 m/sec
3-U G=5 m/sec
0.5
city
0
20
40
60
80
CITES 2005, Novosibirsk
X (km)
100
120
Height of boundary layer
2.5
2.5
8.5
8.5
8.5
8.0
7.0
7.0
8.0
7.5
7.5
7.0
7.0
6.5
6.5
6.0
6.0
5.5
5.5
5.0
5.0
4.5
4.5
4.0
4.0
2
6.5
6.0
6.0
5.5
5.5
1.5
4.5
Z (km)
5.0
5
4.
4.5
4.0
4.0
3.5
3.5
4.5
1.5
5.0
z (km)
8.0
7.5
6.5
1
8.5
8.0
7.5
2
8.5
3.5
1
3.5
4.5
4.0
4.0
0.5
4.0
No longitudinal diffusion of heat
0.5
With longitudinal diffusion of heat
3.5
3.5
0
4.0
20
3.5
40
4.55.0
60
5.0
3.5
4.0
80
100
120
0
20
X (km)
40
5.
5
60
X (km)




 
U W
   w  
<u
t
x
z
z
x
CITES 2005, Novosibirsk
80
100
120
Impact of the UHI and the UCL
on the Mesoscale Flow
CITES 2005, Novosibirsk
Typical Flat Urban Modeling Domain
CITES 2005, Novosibirsk
Parameterization of Urban Roughness
wind
wind
(a)
(b)
Scheme of the numerical grid in the urban
area by Kondo et al. (1998)
Scheme of the numerical grid in the urban
area by Martilli (2002)
The concept of incorporation of urban
canopy model
CITES 2005, Novosibirsk
Governing Equations for UBL
2D case:
U x  Wz  0,
1
U t  UU x  WU z   Px  wu z  fV  Du ,

Vt  UVx  WVz   wv z  fU  Dv ,
Wt  UWx  WWz  
1
0
Pz  w 2
t  U x  W z   u
x
z
  g ,
 w z  Dθ .
CITES 2005, Novosibirsk
Turbulent fluxes

 ∂U ∂ V 
uw , vw  = - K M  ,

∂z
∂z


KM =E SM
c 
∂Θ
w θ = - KH
+c
∂z
1 2 2

2
1


G

s
G

2 M
6 H   5 ( g ) 
D 3

KH =E SH
is the countergradient term
2



1
2
S M   s0 1  s1GH  s2  s3GH   s4 s5 1  s6GH  ( g )

D
E 


2
2
 GH   N  , GM   S  ,   E / 
1 2 1
SH  
1  s6GH  
2
2

D  3 c1




2

U

V
 N  g
, S2    
z
 z   z 
D  1  d1GM  d 2GH  d 3GM GH  d 4GH2  d 5GH2  d 6G M GH  GH
di , si (i  1,...,6) arethe functionsof (c1,c2 , c3 ,c1 , c2 )
CITES 2005, Novosibirsk
Three-parametric turbulence model
E,t + (cμ /σ E )(E 2 /ε)E,i  ,i = ui u j ,i U i , j   i ui     DE
2
ˆ
ε,t  (c /  E )( E 2 /  ) ,i  ,i     D
ε
E
bij U i

2E
U i
(    0  1
 2 i  ui  3  j
 ui
)
 x j


x j
θ 2 ,t  (c /  E )( E 2 /  ) 2 ,i  ,i  2ui  ,i 2 ,
DA ( A  Ui , , E, ) are the extra terms in urban areas.
CITES 2005, Novosibirsk
Parameterization of Effects of Urban
Surfaces on the Airflow
[Raupach et al.(1991), Raupach (1992), Vu et al.(2002), Martilli (2002)]
The extra terms DA in the Governing Equations are:
DU = turbulent momentum flux (roofs and canyon floors) +
drag (vertical walls)
Dθ = turbulent fluxes of sensible heat from roofs and the canyon floor +
the temperature fluxes from the walls
DE = increasing of conversion of mean kinetic energy into the TKE
[ by as, for example, Raupach and Shaw (1982)]
1/2
E
Dˆ ε  cpε
ε (cpε  0.7) a ‘second’ dissipation linked with the scale
L
of turbulence L=L(z) induced by the presence
of the buildings
CITES 2005, Novosibirsk
Results of Simulation
CITES 2005, Novosibirsk
Vertical section of potential temperature and
horizontal wind speed at 1200 LST
7.5
7.5
7.0
2
6.5
3.0
6.5
6.0
6.0
2.5
5.5
5.5
1.5
3.5
4.0
1
60
3.5
80
100
120
0
20
40
8.5
6.0
Z,KM
5.5
6.0
5.5
5.0 5.0
5.0
5.0
6.5
4.0
4.0
3.5
3.5
6.0
3.0
3.5
4.0
4.5
5.0
3.0
3.5
0.5
3.5 4.0
3.0
2.0 2.
5
5.0
4.5
3.0
0.5
4.5
3.0
0
20
40
60
X, KM
0
80
100
 UG=5 ms-1
5.5
1
3.5
4.0
4.0
3.0
120
1.5
5.0
4.5
4.5
1
5.0
2
7.0
6.5
6.0
1.5
d)
7.5
7.0
6.5
100
5.0
7.5
5.0
8.0
8.0
7.5
2
2.5
8.5
4.5
8.5
80
X,KM
Z, KM
c)
2.0
60
X, KM
2.
5
5.0
40
2.
0
120
4.5
20
40
60
X,KM
CITES 2005, Novosibirsk
80
5.0
20
2.5
0
3.5
1.5
3.0
4.5
3.5
3.5
0.5
3.0
4.0
0.5
UG=3 ms-1
4.0
3.5
3.0
3.0 2.5
3.5
4.0
3.5
3.0
Z, KM
4.5
4.0
4.0
3.5
Z, KM
5.0
4.5
2.5
3.0
7.0
6.5
2.
5
2
1
b)
8.0
8.0
1.5
2.5
8.5
3.0
8.5
a)
3.0
2.5
4.5
100
120
Vector field of horizontal wind speed and
isotachs of vertical velocity for 12:00 LST
2.5
U G=3ms -1
2
0 .2
Z, KM
1.5
1
- 0 .2
0 .6
50
X , KM
CITES 2005, Novosibirsk
-0 .2
40
0.8
-0.3
0.2
0.5
60
Vector field of horizontal wind speed and
isotachs for vertical velocity for 12:00 LST
2.5
2
UG=5ms
-1
Z,KM
1.5
0 .1 0
-0 .0 7
1
0.15
-0.10
0 .1 3
0.5
-0.07
40
50
X, KM
CITES 2005, Novosibirsk
60
Vertical section of potential temperature and
horizontal wind speed at 1200 LST
7.5
7.5
7.0
2
6.5
3.0
6.5
6.0
6.0
2.5
5.5
5.5
1.5
3.5
4.0
1
60
3.5
80
100
120
0
20
40
8.5
6.0
Z,KM
5.5
6.0
5.5
5.0 5.0
5.0
5.0
6.5
4.0
4.0
3.5
3.5
6.0
3.0
3.5
4.0
4.5
5.0
3.0
3.5
0.5
3.5 4.0
3.0
2.0 2.
5
5.0
4.5
3.0
0.5
4.5
3.0
0
20
40
60
X, KM
0
80
100
 UG=5 ms-1
5.5
1
3.5
4.0
4.0
3.0
120
1.5
5.0
4.5
4.5
1
5.0
2
7.0
6.5
6.0
1.5
d)
7.5
7.0
6.5
100
5.0
7.5
5.0
8.0
8.0
7.5
2
2.5
8.5
4.5
8.5
80
X,KM
Z, KM
c)
2.0
60
X, KM
2.
5
5.0
40
2.
0
120
4.5
20
40
60
X,KM
CITES 2005, Novosibirsk
80
5.0
20
2.5
0
3.5
1.5
3.0
4.5
3.5
3.5
0.5
3.0
4.0
0.5
UG=3 ms-1
4.0
3.5
3.0
3.0 2.5
3.5
4.0
3.5
3.0
Z, KM
4.5
4.0
4.0
3.5
Z, KM
5.0
4.5
2.5
3.0
7.0
6.5
2.
5
2
1
b)
8.0
8.0
1.5
2.5
8.5
3.0
8.5
a)
3.0
2.5
4.5
100
120
Vertical section of potential temperature and horizontal wind speed
(3 ms-1) for simulation at 1200 LST
Z , km
8.5
a)
8.5
b)
8.0
8.0
7.5
7.5
7.0
2
6.5
6.5
3.0
7.0
6.5
Present
6.0
6.0
2.5
5.5
5.5
3 .0
2
1.5
2.5
3.0
2.5
3.0
Z , km
1.5
5.0
4.0
3.5
0
20
40
60
80
100
120
0
20
40
3.5
2.
0
1.5
3.0
4.5
3.5
3.5
0.5
3.0
4.0
0.5
computation
4.0
1
2.
5
2.0
2.
5
3.5
2.
5
4.0
3.5
3.0
3.0 2.5
3.5
3.5
4.0
1
3.5
4.5
3.
0
4.5
60
80
km
100
120
km
Computation
of Martilli
(JAM,2002,V.41,1
247-1266)
CITES 2005, Novosibirsk
Vertical section of potential temperature and
horizontal wind speed
2.5
8.5
4.5
4.0
4.5
40
2.5
0
80
100
120
20
2
4. .5
0
60
40
X, KM
0.5
c)
d)
40
Z, KM
Z,KM
60
X, KM
80
100
2.8
3.3
20
3.5
1.8
1.3
2.3
0
120
3.8
3.3
4.0
4.0
UG=3 ms-1
3.8
3
4.
0.1
4.5
4.0
3.5
3.3
4.5
4.5
0
120
2.8
1.3
1.3
1.8
2.3
3.3
0.2
2.8
4.5
3.3
24:00 LST
1.8
0.3
2.3
0.3
0.1
100
2.3
0.4
2.8
0.4
3.3
2.8
5.0
0.2
80
X, KM
1.3
0.5
UG=3 ms-1
1.5
20
0.5
3.5
5.0
60
3.5
3.
5
3.0
0
2.5
12:00 LST
1
3.5
4.0
0.5
3.5
4.0
3.5
3.0
4.0
4.0
3.0
3.5
1.5
5.0
4.5
3.
0
5.0
2.5
Z, KM
6.0
5.5
5.5
1
4.0
3.5
2.5
6.5
6.0
1.5
2
7.0
5.0
6.5
3.5
7.0
3.5
2
3.0
3.0
7.5
7.5
b)
3.0
8.0
3.3
8.5
8.0
2.8
a)
Z, KM
2.5
20
40
60
X,KM
CITES 2005, Novosibirsk
80
100
120
Temperature field above the city
0.5
Temperature field avove the city
-1
5.0
UG=3ms
4.8
24:00 LST
4.8
4.5
Z, km
0.3
4.8
0.4
0.2
4.5
5
4.
4.3
0
3.0
4.0
3.8
3.5
4.0
3.8
20
4.5
4.3
0.1
40
60
80
X, km
CITES 2005, Novosibirsk
4.3
4.0
3.8
3.5
3.0
100
120
The Vertical Temperature Profiles
0.3
1200 LST
2400LST
1200LST
2400LST
0.2
Z, km
blue lines are at the city center
red lines are out the city
0.1
0
2
3
4
5
6
0
Temperature, K
CITES 2005, Novosibirsk
7
Vertical section of potential temperature and
horizontal wind speed
2.5
8.5
4.5
4.0
4.5
40
2.5
0
80
100
120
20
2
4. .5
0
60
40
X, KM
0.5
c)
d)
40
Z, KM
Z,KM
60
X, KM
80
100
2.8
3.3
20
3.5
1.8
1.3
2.3
0
120
3.8
3.3
4.0
4.0
UG=3 ms-1
3.8
3
4.
0.1
4.5
4.0
3.5
3.3
4.5
4.5
0
120
2.8
1.3
1.3
1.8
2.3
3.3
0.2
2.8
4.5
3.3
24:00 LST
1.8
0.3
2.3
0.3
0.1
100
2.3
0.4
2.8
0.4
3.3
2.8
5.0
0.2
80
X, KM
1.3
0.5
UG=3 ms-1
1.5
20
0.5
3.5
5.0
60
3.5
3.
5
3.0
0
2.5
12:00 LST
1
3.5
4.0
0.5
3.5
4.0
3.5
3.0
4.0
4.0
3.0
3.5
1.5
5.0
4.5
3.
0
5.0
2.5
Z, KM
6.0
5.5
5.5
1
4.0
3.5
2.5
6.5
6.0
1.5
2
7.0
5.0
6.5
3.5
7.0
3.5
2
3.0
3.0
7.5
7.5
b)
3.0
8.0
3.3
8.5
8.0
2.8
a)
Z, KM
2.5
20
40
60
X,KM
CITES 2005, Novosibirsk
80
100
120
Vertical profiles of ‘local’ friction velocity

2
u*  uw  vw
7

2 1/ 4
Real scale data
Oikawa and Meng
6
Rotach M.
Feigenwinter C.
Computation
U G=3 ms -1
5
Z / ZH
1
2
U G=5 ms
-1
4
3
2
1
0
-1
0
1
u* / u*max
CITES 2005, Novosibirsk
2
3
Verticals profiles of ratio u*/U
7
6
Computation:
U G=3ms -1
5
U G=5ms -1
Real scale data
from Roth (2000)
Z / ZH
1
2
4
3
2
1
0
0
0.05
0.1
0.15
0.2
0.25
u* / U
CITES 2005, Novosibirsk
0.3
0.35
Vertical profiles of TKE in the centre city
5
Computation:
1,3 - at 1200 LST
2,4 - at 2400 LST
Observations data:
+
4
Rotach(1993)
Oikawa, Meng(1995)
Feigenwinter (1999)
Louka et al.(2000)
U G=3ms
Z / ZH
3
1
3
U G=5ms
-1
-1
2
4
+
2
1
0
0
+
+
1
2
+
+
3
4
E / (u* max)
2
5
CITES 2005, Novosibirsk
6
7
8
2 -2
Turbulent kinetic energy, m s
2.5
U G=3ms-1
12:00 LST
0.3
9
2
1.9
3
Z, km
1.1
6
1.5
9
93
1.
0.3
0.
39
2.71
1
1.
16
3.48
1.1
4.
25
6
2.7
3.48
5.8
5.03
0
5.03
3
3.482.71
4.25
1
1.9
0.5
1.93
1.16
20
1.93
40
2.71
5.03
4.25
60
X, km
CITES 2005, Novosibirsk
1.93
1.16
80
100
120
2.5
U G=3ms
-1
2
0.2
Z, KM
1.5
1
-0 .2
0.6
40
-0.2
0.8
-0.3
0.2
0.5
50
60
70
80
X , KM
CITES 2005,
Novosibirsk
90
100
CONCLUSIONS
■ Using the updated expressions for the pressure-velocity
and pressure-temperature correlations, we have derived
an improved turbulence model to describe the Urban
Boundary Layer.
■ In simple 2D case are investigated the modifications in
global structure of the ABL caused by the Urban Heat
Island and the Urban Canopy Layer.
■ The comparison between computed results and field
observational data on various integrated turbulent
characteristics reveals that the improved model can
simulate the turbulent transport processes within and
above the building canopy with satisfactory accuracy.
CITES 2005, Novosibirsk