Chapter 10 IMPORTANT! From Chapter 7, KNOW area formulas for: Triangles Rectangles Trapezoids Hexagons Name the parts:2 (Right Rectangular Prism) 1- lateral edge (height) 2- lateral face (side) 3- base (top/bottom) RIGHT PRISM: SA.
Download ReportTranscript Chapter 10 IMPORTANT! From Chapter 7, KNOW area formulas for: Triangles Rectangles Trapezoids Hexagons Name the parts:2 (Right Rectangular Prism) 1- lateral edge (height) 2- lateral face (side) 3- base (top/bottom) RIGHT PRISM: SA.
Chapter 10 IMPORTANT! From Chapter 7, KNOW area formulas for: Triangles Rectangles Trapezoids Hexagons Name the parts: 3 1 2 (Right Rectangular Prism) 1- lateral edge (height) 2- lateral face (side) 3- base (top/bottom) RIGHT PRISM: SA = ( ____ )( ____ ) + 2( ____ ) SA = ph + 2B base perimeter height Base Area RIGHT PRISM: Volume = ( ____ )( ____ ) V = Bh Base Area height RIGHT CYLINDER: SA = 2( __ )( __ )( __ ) + 2( __ )( __) SA = 2πrh + 2 2πr RIGHT CYLINDER: V = ( ____ )( ____ )( ____ ) V= 2 πr h Complete: Prisms Cylinders SA V ph + 2B Bh Prisms Cylinders SA V ph + 2B Bh 2πrh + 2πr2 πr2h Name the parts: 1 2 4 3 5 (Square Pyramid) 1- lateral edge 2- slant height (l) 3- apothem 4- height (h) 5- base edge PYRAMID: SA = ½ ( ___ )( ___ ) + ( ___ ) SA = ½ pl + B base perimeter base Area PYRAMID: 1 3 V = ( ____ )( ____ ) 1 V = 3 Bh Base Area Name the parts: 3 1 2 1- height (h) 2- radius (r) 3- slant height (l) CONES: SA = ( __ )( __ )( __ ) + ( __ )( __ ) SA = π r l + π 2 r CONES: V = 1/3 ( ___ )( ___ )( ___ ) V = 1/3 π 2 r h volume of a cylinder Complete the chart: Surface Area Pyramids Cones ½ pl + B Volume 1 3 Bh Surface Area Pyramids Cones ½ pl + B ½ (2 π r) l + π r2 or π r l + π r2 Volume 1 3 1 3 Bh π r2 h SPHERES: Area = ( ___ )( ___ )( ___ ) A = 4 π r2 Area of a circle SPHERE: V = ( ___ )( ___ )( ___ ) V 4 3 = 3π r If r3 = 8 then r = ____ If r3 = 27 then r = ____ If r3 = 125 then r = ____ If r3 = 8 then r = 2 If r3 = 27 then r = 3 If r3 = 125 then r = 5 Complete for similar solids: Scale Factor/Similarity Ratio = 2 : 3 Area Ratio = _____ Volume Ratio = _____ Complete for similar solids: Scale Factor/Similarity Ratio = 2 : 3 Area Ratio = 22:32 = 4:9 Volume Ratio = 23:33 = 8:27 Find the slope and y-intercept of the following line: 6x – 8y = 15 6x – 8y = 15 -8y = -6x+ 15 y = 6 x + 815 8 slope (3/4) y-intercept (-15/8) Solve by factoring: x2 – 3x – 10 = 0 2 x – 3x – 10 = 0 (x – 5)(x + 2) = 0 x = 5, -2