Strömavtagare – kontaktledningsinteraktion

Download Report

Transcript Strömavtagare – kontaktledningsinteraktion

Strömavtagare –
kontaktledningsinteraktion
Gröna Tåget slutseminarium
6 Mars 2014
Sebastian Stichel, Per-Anders Jönsson
och Zhendong Liu
Innehåll
• Verifiering av 2D modellen
• Jämförelse FE-MBS
• Förbättringar – 3D modellen
• Aktiva strömavtagare – några första steg
• Benchmark
• Parameterstudier
• Diskussion om framtiden
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
2
CaPaSIM – 2D FE-modell
• Kontaktledning
-  Kontakttråd Balkelement
-  Bärlina
Stångelement
-  Y-lina
Stångelement
-  Bärtrådar
Wire element
-  Tillsatsrör
Fjäderelement +
punktmassa
-  Klämmor
Punktmassor
• Kontaktelement
• Strömavtagare
-  Punktmassor
-  Kopplingselement
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
3
CaPaSIM – Dynamisk analys
Strömavtagarhöjd
Kontaktledningshöjd
Tid [s]
Kontaktkraft (P)
Tid [s]
P
Tid [s]
v
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
4
Verifiering av 2D-modellen
Bakgrund
• Uppdatering till aktuell ANSYS version
• Ny kontaktmodell implementerad
• Verifiering av den nya kontaktmodellen
• Jämförelse med POLIMI’s beräkningsprogram
• Jämförelse med Gröna Tåget mätningar
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
5
Verifiering av 2D-modellen
• Jämförelse med POLIMI’s program (PCaDA)
• Sammarbete med Politecnico di Milano där
doktoranden Marco Carnevale arbetade på KTH
under ett halvår.
KTH Railway Group
Centre for Research and Education in Railway Technology
• Jämförelse av modeller
-  POLIMI’s 2D modell och CaPaSIM
-  Statisk analys
-  SYT 7.0/9.8
Contact wire
Static def. [mm]
Verifiering av 2D-modellen
[m]
Static def. [mm]
Skillnad i
modellering av
tillsatsrör.
Messenger wire [m]
KTH Railway Group
Centre for Research and Education in Railway Technology
Verifiering av 2D-modellen
•  Jämförelse mellan
programsystem
-  POLIMI
-  CaPaSIM
CaPaSIM
Test
•  Jämförelse mätning
och simulering
•  System
-  SYT 7.0/9.8
POLIMI
•  Teststräcka
-  Skövde - Töreboda
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
8
Verifiering av 2D-modellen
Sammanfattning
• Implementerad ny kontaktmodell
• Jämfört simuleringsresultat från 2D-modellen
-  Med POLIMI’s model
-  Med mätningar utförda inom Gröna Tåget
• Publicerat ett papper tillsammans med POLIMI
P2
P1
v
24/04/14
KTH Railway Group
L
Centre for Research and Education in Railway Technology
9
Master Thesis Roberto Tieri
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
10
Enkel flerkroppsdynamikmodell
Real pantograph
24/04/14
KTH Railway Group
Mathematical 3 d.o.f model
Centre for Research and Education in Railway Technology
11
Proposed model
Uplift force (aerodynamic
test)
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
12
Proposed model – Pantograph (12/17)
Static air spring pre-load
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
13
Proposed model – Contact model
Contact wire
informations
Catenary
informations
Pantograph
informations
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
14
Comparison of contact force
Västerås- Grillby
Real Time analysis
24/04/14
KTH Railway Group
SYT 15/15
Centre for Research and Education in Railway Technology
15
Simulation Results – Application
Shaped ±300 mm
Pantograph’s
Strips
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
16
Förbättringar - 3D modellen
Skillnader i 3D modell relativt 2D
•  Kontaktledning
-  Zick-zack geometri
-  Tillsatsrör
•  Strömavtagare
-  Rollfrihetsgrad hos
huvudet
•  Kontaktformulering
-  Linje – Linje (korsande)
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
17
Förbättringar - 3D modellen
Egenfrekvenser
3D
2D
f1
5.6
5.6
f2
5.9
-
f1
f2
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
f1
18
Förbättringar - 3D modellen
k
Skillnader mellan
2D och 3D-model
Styvhet
Styvhet
Sidoläge
Kontaktledning
Strömavtagare
Tillsatsrör
24/04/14
KTH Railway Group
k/2
Centre for Research and Education in Railway Technology
19
Förbättringar - 3D modellen
2D Validering
• SYT 7.0/9.8
• Bra överensstämmelse
med mätresultat
• Något bättre överensstämmelse
med 3D än med 2D modell
upp till 280 km/h
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
3D Test
20
Förbättringar - 3D modellen
Kraft [N]
Skillnader mellan
2D och 3D-model
SYT 7.0/9.8
3D Kraft [N]
2D Hastighet [km/h]
Hastighet [km/h]
Kraft [-]
2D/3D Hastighet [km/h]
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
21
Förbättringar - 3D modellen
Sammanfattning
• 3D modell implementerad
• God överensstämmelse med mätresultat
• Lägre transienter vid stolppassage
• Markant skillnad i respons mellan 2d/3D
modellerna för frekvensintervallet 5-20 Hz
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
22
Active Control – Two master theses
Thesis 1: Cosimulation between GENSYS and
SIMULINK
Cosimulation block in SIMULINK
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
23
Active Control – Optimal control
active
Ca. 15% reduktion
av standardavvikelse
av kontaktkraften
→ 50 km/h högre
hastighet
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
24
Active control – master thesis Schaer
• 
• 
• 
24/04/14
Controller design in Matlab/Simulink
Simulation with a full finite element model in
ANSYS
H∞ control
KTH Railway Group
Centre for Research and Education in Railway Technology
25
Time Domain
Result, 280
km/h280 km/h
Time domain
result
Without Control
Standard Deviation
200
180
160
Force [N]
140
120
100
80
60
40
20
0
6.2
6.3
With Control
6.5
Time [s]
6.6
6.7
Masterthesis Raphael Schär
19.06.2013
24/04/14
6.4
KTH Railway Group
Centre for Research and Education in Railway Technology
6.8
6.9
Mean Value
26
26
Results twoMean
pantographs
Two Pantographs,
and Standard Deviation
Including a controller, same reference value
Standard Deviation
Reduction:
First:
1.6 to 4.4 N
7 to 18%
Second:
1 to 10 N
5 to 23 %
Masterthesis Raphael Schär
19.06.2013
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
35
27
Conclusions master thesis Schaer
Conclusions
Two pantographs within 100 meter distance are possible
up to 280 km/h
Reduction is smaller compared with the simpler model in
GENSYS
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
28
Benchmark
Partners
Benchmark av programvara
för analys av dynamisk
interaktion mellan
kontaktledning och
strömavtagare
•  Politecnico di Milano
•  KTH Stockholm
•  Instituto Superior Tecnico Lisboa
•  Universidad Pontificia Comillas de Madrid
•  Universitat Tecnica Valencia
•  Southwest Jaotong University Chengdu
•  DB Systemtechnik GmbH
•  Société nationale des chemins de fer français SNCF
•  Korea Railroad Research Institute
•  Railway Technical Research Institute Japan
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
29
Benchmark
System
Arbetet organiseras i 2 steg:
Steg 1: Analys av ett fiktivt idealt system
•  1.
•  2a.
•  2b.
•  3.
non linear static configuration of the catenary (3D catenary model);
dynamic interaction of the catenary with a single pantograph (2D catenary model);
dynamic interaction of the catenary with a single pantograph (3D catenary model);
dynamic interaction of the catenary with multiple pantographs (2D catenary model).
Steg 2: Jämförelse med mätningar för ett verkligt system
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
30
Benchmark
System i steg 1
Systemet inspererat av
Franska LN2 och Italienska C270
systemen
L=
Hs=
hc=
55 [m]
1.2 [m]
55 [mm] (1:1000 av L)
Sc=
Sm=
22 [kN]
16 [kN]
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
31
Benchmark
System i steg 1
Data inspererat av
en höghastighets strömavtagare
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
32
Benchmark
General
Institution
sw name
DB
PROSA
IST
Catenary
FEM/FD
2D/3D
FD
2D
PantoCat
FEM
3D
KRRI
SPOPS
FEM
2D (**)
KTH
CaPaSIM
FEM
3D
PCaDA
FEM
3D
RTRI
Gasen-do FE
FEM
3D
SNCF
OSCAR
FEM
3D
SWJTU
PCRUN
FEM
3D
UPCo
CANDY
FEM
2D
UPV
PACDIN
FEM(*)
3D
POLIMI
Element
types
Droppers
beams,
strings
Lumped
Mass
Multiple
pantos
Penalty
method
Numerical integration
Constraint
Method
Linear spring-mass
system
Velocityproportional
Yes
Yes*
Yes*
Yes
No
Yes
beam elements
Proportional
Yes
Yes
Yes
Yes
Yes
No
Catenary: Newmark,
pantograph: Gear (in cosimulation)
mass-spring
Velocityproportional
Yes
No (Rolling
considered)
No
Yes
Yes
Yes
Alpha method
mass+stiffness / bar
element
Proportional
Yes
Yes
No
Yes
Yes
No
Newmark method
mass-spring / FEM
Proportional
Yes
Yes
No
Yes
Yes
No
Newmark method
Bar Element
Proportional
Yes
No
No
Yes
Yes
No
Implicit Newmark
+ Newton Raphson
beam elements
Proportional
or Rayleigh
or modal
Yes
Yes
Yes
Yes
Yes
No
Implicit Newmark
Spring Element
Linear spring-mass
system
Modal
Yes
No
Yes
Yes
Yes
No
Newmark method
bar elements with
slackening
Linear spring-mass
system for 2D
Rayleigh
Yes
No
No
Yes
Yes
No
Alpha method + Newton
Rapshon
Yes
No
No
Yes
Yes
No
Newmark, Alphamethod, 4th order RK
EulerBernoulliBeam elements with
Timoshenko
slackening
Beams
Eulermass-spring-damper
Bernoulli
with slackening
Beams
EulerBernoulli
bar elements with
beams, bar
slackening
elements
Eulernon-linear visco-elastic
Bernoulli
with slackening
Beams
EulerBar Elements with
Bernoulli
Slackening
Beams
EulerNon-linear with
Bernoulli
slackening
Beams
Corotational
beams and
bars
ANCF
beams,
bars
Damping
Sliding contact
Catenary: explicit 2-step
method, pantograph
trapezoidal rule
integration or 2-step
backward
difference (BDF)
piecewise linear with
slackening
Beams
Registration arms
Pantograph
Flexiblity
contact Multi-Body
strips
bar elements with
slackening
Non-linear bar element Proportional
(*) Absolute Node Coordinate Formulation
(**) Change of lateral postion of the contact point due to stagger can be considered
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
33
Parameter studies
The following parameters are investigated:
• Type of catenary (x4)
• Number of pantographs (x1, x2, x3)
• Running speed (150-300 km/h)
• Spacing distance between pantographs (60-80 m)
• Position of a pantograph in the whole system
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
34
Parameter studies
Single pantograph operation with respect to
different types of catenaries
60
Standard deviation (N)
Mean contact force (N)
150
100
SYT 7.0/9.8
STY 15/15
ST 9.8/9.8
ST 15/15
50
0
180
200
220
240
260
Train speed (km/h)
280
300
50
40
30
20
10
0
180
Comment: The catenary systems with s2tch wires have less fluctua2on of contact force than those without the s2tch wire 24/04/14
KTH Railway Group
SYT 7.0/9.8
SYT 15/15
ST 9.8/9.8
ST 15/15
200
220
240
260
Train speed (km/h)
280
300
With Pantograph SSS400
Centre for Research and Education in Railway Technology
35
Parameter studies
Two pantographs operation with respect to
pantographs at different spacing distances
Leading pantograph
Trailing pantograph
150
Mean contact force (N)
Mean contact force (N)
150
100
60m
80m
100m
120m
50
0
150
200
250
Train speed (km/h)
100
30
24/04/14
60m
80m
100m
120m
20
10
0
150
200
250
Train speed (km/h)
300
60
Standard deviation (N)
Standard deviation (N)
40
50
0
150
300
60
50
60m
80m
100m
120m
200
250
Train speed (km/h)
KTH Railway Group
300
50
40
30
60m
80m
100m
120m
SYT 7.0/9.8
WBL 88
20
10
0
150
Comment: The mean contact forces is much less influenced by other pantographs. The standard devia2on of the leading pantograph is less influenced by the trailing one, while the standard devia2on of the trailing one is significantly influenced by the one ahead. 200
250
Train speed (km/h)
Centre for Research and Education in Railway Technology
300
36
Parameter studies
Two pantographs operation with respect
to different types of catenary
Leading pantograph
Trailing pantograph
100
60m
80m
100m
120m
50
0
180
200
220
240
260
Train speed (km/h)
280
100
30
24/04/14
60m
80m
100m
120m
20
10
0
180
200
220
240
260
Train speed (km/h)
280
300
60
Standard deviation (N)
Standard deviation (N)
40
60m
80m
100m
120m
50
0
180
300
60
50
Comment: the performance on different systems varies a lot. 150
Mean contact force (N)
Mean contact force (N)
150
200
220
240
260
Train speed (km/h)
KTH Railway Group
280
300
50
40
30
60m
80m
100m
120m
SYT 15/15
WBL 88
20
10
0
180
200
220
240
260
Train speed (km/h)
280
Centre for Research and Education in Railway Technology
300
37
​𝐹↓𝑚𝑖𝑛 =​𝐹↓𝑚𝑒𝑎𝑛 −3𝜎≥0 𝑁
​𝐹↓𝑚𝑎𝑥 =​𝐹↓𝑚𝑒𝑎𝑛 +3𝜎≤200 𝑁
𝜎≤​𝜎↓𝑚𝑎𝑥 =𝐹↓𝑚𝑒𝑎𝑛 /3
𝜎≤​𝜎↓𝑚𝑖𝑛 =(​200−𝐹↓𝑚𝑒𝑎𝑛 )/3
Parameter studies
Three pantographs operation with respect to
pantographs at different spacing distances
60m
40
30
First
Second
Third
Min
Max
Standard deviation (N)
Standard deviation (N)
50
20
10
0
150
80m
60
60
200
250
Train speed (km/h)
50
40
30
First
Second
Third
Max
Min
SYT 7.0/9.8
WBL 88
20
10
0
150
300
100m
200
250
Train speed (km/h)
40
30
First
Second
Third
Max
Min
Standard deviation (N)
Standard deviation (N)
24/04/14
50
20
10
0
150
KTH Railway Group
300
120m
60
60
Comment: The spacing distance between pantographs is a cri2cal factor that decides the dynamic behavior of a mul2-­‐pantograph system.
BVS 543.330
200
250
Train speed (km/h)
300
50
40
30
First
Second
Third
Min
Max
20
10
0
150
Centre for Research and Education in Railway Technology
200
250
Train speed (km/h)
300
38
​𝐹↓𝑚𝑖𝑛 =​𝐹↓𝑚𝑒𝑎𝑛 −3𝜎≥0 𝑁
​𝐹↓𝑚𝑎𝑥 =​𝐹↓𝑚𝑒𝑎𝑛 +3𝜎≤200 𝑁
𝜎≤​𝜎↓𝑚𝑎𝑥 =𝐹↓𝑚𝑒𝑎𝑛 /3
𝜎≤​𝜎↓𝑚𝑖𝑛 =(​200−𝐹↓𝑚𝑒𝑎𝑛 )/3
Parameter studies
BVS 543.330
Three pantographs operation with respect to
pantographs at different spacing distances
80m
60m
60
50
40
30
Standard deviation (N)
Standard deviation (N)
60
First
Secong
Third
Max
Min
20
10
180
200
220
240
260
Train speed (km/h)
280
50
40
30
First
Second
Third
Max
Min
SYT 15/15
WBL 88
20
10
0
180
300
200
100m
220
240
260
Train speed (km/h)
24/04/14
First
Second
Third
Max
Min
50
40
30
20
10
0
180
300
120m
60
Standard deviation (N)
Comment: The type of the catenary system is also a cri2cal factor that influences the performance. The SYT 15/15 allows trains to run at a high speed
Standard deviation (N)
60
280
200
KTH Railway Group
220
240
260
Train speed (km/h)
280
300
50
40
30
First
Second
Third
Max
Min
20
10
0
180
200
220
240
260
Train speed (km/h)
Centre for Research and Education in Railway Technology
280
300
39
Parameter studies
Conclusions:
• The pantograph-catenary systems with the stitch wire
have less fluctuation of contact force
• The mean contact forces are not sensitive to both the
number of pantographs and their spacing distances
• A trailing pantograph is heavily influenced by all
pantographs in front of it
• The dynamic behavior of the system does not always get
worse with the number of pantographs increasing
• The spacing distance between pantographs and the type
of catenary in use are critical factors in multi-pantograph
operation
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
40
Framtida arbete
• Benchmark – Jämförelse med uppmätta resultat
• Vidareutveckla 3D modellen
• Kontaktledningssystem för framtida
höghastighetsbanor i Sverige
• Aktiva strömavtagare ev. tillsammans med POLIMI
• Testa aktiva strömavtagare
24/04/14
KTH Railway Group
Centre for Research and Education in Railway Technology
41