CFETR等离子体平衡计算的一些相关问题

Download Report

Transcript CFETR等离子体平衡计算的一些相关问题

ASIPP
1. CFETR等离子体平衡计算的一些
相关问题
2. CFETR电流驱动的初步讨论
1
ASIPP
CFETR等离子体平衡计算的
一些相关问题
李国强 钱金平 郭勇 罗正平
任启龙 吴斌 肖炳甲 邢哲 万宝年
中科院等离子体物理研究所
2
ASIPP
等离子体电流
• Ip是堆芯等离子体性能的关键参数之一
–
– x
– x
• ITER reference scenarios
Baseline
Hybrid
Steady-state
Ip (MA)
15
~12
~9
Pfusion (MW)
500
>300
~250
q95
≥3
3.6-4.2
4.5-6.5
betaN
1.8
2-2.5
≥2.6
H98y2
1.0
1-1.2
≥1.3
3
ASIPP
CFETR的不同参数下的Ip
• q profile of CFETR reference scenarios
– Inductive: q0~1, q95 ≥3
– Hybrid:
q0≥1, q95=3.9, flat central q
– Steady-state: q0=2.3, q95=5.0, qmin=1.8
Hybrid
Steady-state
inductive
• Ip of CFETR at different scenario and
Bt0
Inductive
Ip (MA)
Hybrid
Steady-state
5.3
10.5
8.7
7.3
5.0
9.8
8.4
7.0
4.8
9.3
8.0
6.8
4.5
8.5
7.7
6.5
Bt0 (T)
4
ASIPP
CS/PF线圈和等离子体平衡位形
• ITER-like plasma shape
–
–
–
–
–
–
R=5.5m, a=1.6m
k= 1.85
δu=0.42, δl=0.52
Bt0=5.3T, Ip=10MA
q95=3.1, li(3) =0.80
V=470m3, S=487m2
5
ASIPP
PF coils size and position
coil
CS1U
CS2U
CS3U
CS3L
CS2L
CS1L
PF1U
PF2U
PF3U
PF3L
PF2L
PF1L
R(m)
1.274
1.274
1.274
1.274
1.274
1.274
2.684
5.499
10.369
10.369
5.499
2.684
Z(m)
0.8095
2.4285
4.0475
-4.0475
-2.4285
-0.8095
7.375
7.879
7.004
-7.004
-7.879
-7.375
△R(m)
0.512
0.512
0.512
0.512
0.512
0.512
1.0824
0.689
0.7872
0.7872
0.689
1.0824
△Z(m)
1.559
1.559
1.559
1.559
1.559
1.559
1.111
0.707
0.808
0.808
0.707
1.111
匝数
374
374
374
374
374
374
484
196
256
256
196
484
6
ASIPP
VS needed for CFETR 10MA conductive scenario
• Vs needed for fully inductive ramp-up
–
–
–
–
•
•
•
•
阻性消耗:μ*Ip*R0*C_Ejima = 31 VS
感性消耗:μ*Ip*R0*li(3)/2 = 28 VS
外部伏秒消耗 Lext*Ip=μ*Ip*R0*[ln(8*R0/a)-2]~ 87 VS
总共需要大约 ~150 Vs
Break down: ~10 Vs (ITER)
Flat top:30 Vs ?
Ramp-down: ?
总共需要大约 180~190 Vs
7
ASIPP
Time evolution of CFETR 10MA inductive ramp-up
8
ASIPP
PF coils current at different flux state (10MA)
Flux state
PF1
PF2
PF3
PF4
PF5
PF6
CS3L
CS2L
CS1L
CS1U
CS2U
CS3U
83Wb
17.422
5.115
-1.726
-1.272
4.351
16.700
18.088
19.963
20.671
20.568
19.394
17.429
75Wb -70Wb -100Wb
16.310
9.222 3.146
4.935
11.386 11.053
-1.478 -14.277 -14.532
-1.875
-17.385 -17.719
5.662
12.388 11.781
17.114
20.606 15.881
16.558
12.665 4.394
20.352 -11.259 -22.106
20.164 -14.572 -20.479
20.361 -16.050 -21.19
20.971 -6.9781 -19.47
17.083 -1.7082 -7.381
limit
21.8
8.8
11.5
11.5
8.8
21.8
16.8
16.8
16.8
16.8
16.8
16.8
9
ASIPP
PF coils current at different flux state (8MA)
Flux state
PF1
PF2
PF3
PF4
PF5
PF6
CS3L
CS2L
CS1L
CS1U
CS2U
CS3U
45Wb
9.774
2.899
-0.733
-1.031
3.297
10.247
9.633
11.879
12.051
12.215
12.302
9.940
-60Wb -80Wb
6.030
1.778 21.8
10.794
10.560 8.8
-12.271 -12.408 11.5
-13.956 -14.280 11.5
9.025
9.148
8.8
19.219
14.884 21.8
4.409
-0.757 16.8
-7.033
-14.167 16.8
-13.058 -16.781 16.8
-12.261 -16.559 16.8
-8.065 -15.392 16.8
-2.592
-6.631 16.8
10
ASIPP
Divertor configuration
•
•
•
•
ITER-like divertor
Super-X
Snowflake
还未找到super-X和snowflake的
合理解
ITER-like
Super-X
Snowflake
11
ASIPP
Profiles of equilibria of CFETR inductive scenario
• Profiles are key issue for core
plasma parameter
• Pressure and q profile are from
DIII-D ITER demonstration shot
136345
• At the edge region, the
bootstrap current aligns with the
total current
Pressure
q
12
ASIPP
Pedestal height and width
• Pedestal height is a key element
for fusion power
• Pedestal height and width can
be calculated by the EPED1
model (PB mode and KBM)
• With EPED1 model, ITER SS
scenario only has 140MW fusion
power
• We will use EPED1 model to
confirm the pedestal height and
width of CFETR
13
ASIPP
Discussion
• Still a lot work to do for CFETR equilibria configuration
–
–
–
–
–
Plasma shape? Squareness may increase the Ip
Reduce the minor radius?
PF coils number? size and position?
Divertor configuration
Pedestal height and width
14