斉藤 NHMによるBGM法のテスト

Download Report

Transcript 斉藤 NHMによるBGM法のテスト

科研費研究「豪雨の力学的予測のための初期値解析と予測信頼性の評価に関する研究」
平成18年度第2回研究打合せ会 2007/3/19 気象研究所予報研究部輪講室
Development of a self BGM method
with the JMANHM
Kazuo Saito (MRI)
• Introduction (Downscale EPS experiment)
• Supplement of the downscale ensemble experiment of
JMA one week global EPS
• Self BGM method with the JMANHM
• Future subjects
Heavy rainfall occurred on 13 July 2004 in the
southern part of Northern Japan.
OBS.
MSM,
12UTC 12 July
FT=12-18
3 hour accumulated precipitation on 13 July 2004.
Left)00 UTC, Center)03 UTC, Right)06 UTC
Downscale experiments
One week Global EPS at JMA
Mar. 2001~ 12UTC initial, T106 (1.125deg) L40
25members (Mar. 2006~ 51members )
BGM method (12modes, 12 hour cycle)
JMA-NHM (Saito et al., 2006; M.W.R., vol. 134, 1266-1298)
10km L40, 3600×2880km, H=22km (operation: Dx=5 km L50 Mar. 2006- )
Same specification as in the operation before Mar. 2006
Kain-Fritsch scheme, bulk cloud physics, lateral sponge layers 24 grids
a) Simple downscale experiment
Initial:Global EPS
LBC:Global EPS, updated 6 hourly
b) Incremental downscale experiment
Initial:Meso 4D-Var analysis + normalized perturbations by Global EPS
LBC:RSM forecast, updated 3 hourly
Breeding cycle of the one-week EPS at JMA
北半球域
500hPa高度場で
規格化
(気候的変動の14.5%、
湿度は21%)
全層南緯20度以北の
領域で、高度
(地表では気圧)、
風、気温、比湿が成分
Breeding cycle
Breeding
cycle
Breeding
cycle
Breeding
cycle
Breeding
cycle
摂動
解析誤差の
摂動ラン
コントロールラン
空間分布を考慮した
規格化
成長した誤差
求まる12摂動に
対し直交化を行い、
規格化する
予報用摂動
サイクル用摂動
00UTC
12UTC
(12時間予報)
成長した誤差
00UTC
12 cycles
One-week EPS at JMA
(Kyouda, 2000)
Mar. 2001- Mar. 2006 12UTC initial 25members, T106 (1.125deg) L40
BGM method (12modes, 12 hour cycle)
摂動作成方法:
①12時間の摂動ラン
②予報誤差を北半球で求め、500hPa高度場振幅が気候値
変動の10%になるように係数を決め、誤差成長を規格化*
③上記を00,12UTCに行ってBreeding
12UTCに摂動の直交化(直交化係数0.75)
④アンサンブル予報用摂動は、直交化を行わず、
500hPa高度場振幅が気候値変動の15%になるように規格化*、
海陸での解析誤差の違いを考慮し、低波数パターンンの
0.7~1.0の重み分布をかける
*QVについては、Breeding、予報用摂動ともに5割増にインフレーション
(熱帯域の成長率を高めるため)
Forecast of JMA one week Global EPS
Initial time 12UTC 12 July, 2004. 6 hour accumulated precipitation
Control (M00)
Left) FT=00-06
Right) FT=12-18
(Color shades:
1,5,10 mm)
Control
Member M03p
Member M03p
Moderate
precipitation in
the southern
part of Northern
Japan at FT=1218.
Downscale experiments
One week Global EPS at JMA
Mar. 2001~ 12UTC initial, T106 (1.125deg) L40
25members (Mar. 2006~ 51members )
BGM method (12modes, 12 hour cycle)
JMA-NHM (Saito et al., 2006; M.W.R., vol. 134, 1266-1298)
10km L40, 3600×2880km, H=22km (operation: Dx=5 km L50 Mar. 2006- )
Same specification as in the operation before Mar. 2006
Kain-Fritsch scheme, bulk cloud physics, lateral sponge layers 24 grids
a) Simple downscale experiment
Initial:Global EPS
LBC:Global EPS, updated 6 hourly
b) Incremental downscale experiment
Initial:Meso 4D-Var analysis + normalized perturbations by Global EPS
LBC:RSM forecast, updated 3 hourly
Normalization of perturbation
Back ground error for Meso 4D-Var:
PS: 0.7 hPa
U,V: about 2 m/s in lower troposphere
about 3.5 m/s around jet stream
T: about 0.8K in lower troposphere
about 1K in upper troposphere
RH: about 10 % in lower troposphere
about 15 % in upper troposphere
80 % of background error was used as the rough
estimation of the analysis error
PS: 0.6 hPa
rU, rV: 1.8 m/s*(Kg/m3)
q: 0.7 K
Qv: 12% of RH,
8% of RH at 850 hPa
Vertical error covariance
obtained by NMC method in
Meso 4D-Var
3.5
NMC分散
NMC誤差
QV層平均10%
QV層平均15%
RH*10%
RH*15%
M03p
M01p
採用
3
2.5
2
1.5
1
Perturbation is normalized if its RMS
exceeds above values in each level.
0.5
0
1
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35
Global EPS
Simple downscaling
14
14
14
01p-12p
01m-12m
12
12
コントロール
RA
ENSmean
10
10
8
RA
M0 3 p
RA
01p-12p
01m-12m
12
01p-12p
01m-12m
コントロール
RA
MARF
ENSmean
M03p
8
Incremental downscaling
M0 4 p
コントロール
RA
M0 3 p
10
ENSmean
8
RA
M0 1 p
M03pM00
6
6
コントロール
6
MARF
M0 5 p
4
4
4
Control
M0 1 p,1 0 p
0
0
10
30
2
コントロール
40
50
60
70
70
01p-12p
01m-12m
コントロール
RA
mean
60
50
0
10
0
20
30
40
50
60
70
0
140
140
120
120
01p-12p
01m-12m
コントロール
RA
MARF
mean
100
80
40
10
20
30
60
20
40
100
MARF
M10p
M01p
0
0
M10m
M01m
M03m
20
40
60
80
100
0M10p
0
20
mean
M0 5 p
M0 1 p
40
20
M01p
70
M0 2 m
60
M0 2 p
M0 4 m
M0 3 m
コ ント ロー ル
コ ン トロ ー ル
Control
60
M0 4 p
80
M00M03p
10
50
M0 3 p
M03pM00
M03p
40
01p-12p
01m-12m
コントロール
RA
M03p
30
M0 1 m
M0 4 m
M10m
M03m
0
M01p,10p
20
M01m
M1 0 m
M0 1 m
M0 3 m
M0 5 m
M0 3 m
M00M03p
2
2
M0 2 m
M0 2 p
M03m
20
M10m
M01m
M0 1 m
M0 5 m
0
40
60
80
100
120
140
160
180
200
0
20
40
60
80
100
Predicted precipitation over a rectangle in northern Japan 400km×250km.
Horizontal and vertical axis is for FT=0-6 and FT=12-18, respectively.
Upper) Area averaged value. Lower) peak value.
120
140
160
180
200
14
01p-12p
01m-12m
コントロール
RA
ENSmean
12
Enlarged view
- Errors were found in initial interpolation of MA
10
M04p
8
RA
M03p
コントロール
6
M01p
M05p
M02p
4
M02m
M05m
M03m
2
M01m
M04m
0
0
10
20
30
40
50
60
70
140
M03p FT=9-12
M04p FT=12-15
01p-12p
01m-12m
コントロール
RA
mean
120
100
80
M03p
60
M04p
M02m
M05p
コントロール
M02p
M03m
40
M01p
M06p FT=12-15
M01m
M05m
20
M08p FT=15-18
M04m
0
0
20
40
60
80
100
120
140
160
180
200
Supplement of the downscale ensemble
experiment of JMA one week global EPS
・ Errors had been included in the vertical level settings in
initial interpolation of MA;
DZ2 =1080. was used in NEST/Prm/CONFIG (must be DZ2=1180.)
・ Use of the latest version of JMANHM with MY3 closure
model
10
Re-experiment of incremental EPS
8
01p-12p
01m-12m
コントロール
RA
ENSmean
RA
with JMANHM ver. Sep 2005
M04p
6
M08p
M03p
4
M10p
M01p
コントロール
2
M03m
M01m
M10m
0
0
10
20
30
40
50
100
M03p FT=15-18
01p-12p
01m-12m
コントロール
RA
mean
M04p FT=12-15
M08p
80
M11m
60
M03p
M10p
40 M01p
コントロール
M01m
M03m
M10m
20
M08p FT=15-18
M11m FT=12-15
0
0
20
40
60
80
100
120
140
160
180
200
New NHM with the Mellor Yamada Level 3 closure model
Three hour precipitation at 03 UTC 13 July 2004 with Dx=5km.
a) Observed Radar-AMeDAS rain. b) Predicted rain with the
original MSM at FT=18 (Initial time is 09 UTC 12 July 2004). c)
Same as in b) but with the MY3 closure model and the modified
radiation scheme using the partial condensation for cloudiness.
After Hara (2007).
TKE, ql’2, qw’2, ql’qw’ are added to the prognostic variables
Scheduled operation in May 2007
Difference of the
results by model
versions
12 TUC 12 July 2004
Control run with MA
DX=10km
Left :Operational version
(ver. Sep 2005)
Right :New version
(ver. Jan 2007)
10
Re-experiment of incremental EPS
8
01p-12p
01m-12m
コントロール
RA
ENSmean
RA
with JMANHM ver. Jan 2007
M04p
6
M08p
M03p
4
M10p
M01p
コントロール
2
M03m
M10m
M01m
0
0
M03p FT=15-18
10
20
30
40
50
100
M04p FT=12-15
80
01p-12p
01m-12m
コントロール
RA
mean
M11m
M04p
M08p
60
M05p
M10p M03p
M05m
40
M01m
M01p
コントロール
M10m
20
M03m
M08p FT=15-18
M11m FT=12-15
0
0
20
40
60
80
100
120
140
160
180
200
3
01p-12p
01m-12m
コントロール
RA
ENSmean
2
M09p
M10p
1
Difference of QPF by
model versions
0
-3
-2
-1
0
-1
1
2
3
コントロール
-2
M02p
Difference of model physics acts in
later half of the forecast period
-3
40
01p-12p
01m-12m
コントロール
RA
mean
30
M04p
20
M11m
10
0
-40
-30
-20
-10
0
-10
コントロール
-20
-30
-40
10
20
30
40
Self BGM method using JMA-NHM
A self breeding method using JMA-NHM was tested.
Barkmeijer et al (2001)’s moist total energy norm
cp
1
L2
2
2
2
TE   {(U P  U C )  (VP  VC ) }  { (q P  qC ) }  wq
( qP  qC )2 dSdP
2

c p

1 R
2
{
(
P

q
)
seaP
seaC }dS

2
Pr
was computed over entire model domain below 5.3 km.
Here, =300K、Pr=800hPa, wq=0.1.
Perturbations bred in 12 hour forecast cycles are normalized by above total
norm assuming the initial perturbation is 50% of background error of analysis:
PS: 0.35 hPa, rU,rV: 1 m/s*(Kg/m3), q: 0.4 K, Qv: 5% of RH
12 hour breeding cycle from 12 UTC 10 July 2004, targeting 13 July 2004
Failure presented in the former meeting
M01p
12 July 2004 12UTC initial FT=18 RR6
M03p
Very similar results in different members
Self BGM method using JMA-NHM
The self breeding method using JMA-NHM has been reconducted.
Barkmeijer et al (2001)’s moist total energy norm
cp
1
L2
2
2
2
TE   {(U P  U C )  (VP  VC ) }  { (q P  qC ) }  wq
( qP  qC )2 dSdP
2

c p

1 R
2
{
(
P

q
)
seaP
seaC }dS

2
Pr
is computed over entire model domain below 5.3 km.
Here, =300K、Pr=800hPa, wq=0.1.
Perturbations bred in 12 hour forecast cycles are normalized by above total
norm assuming the initial perturbation is 50% of background error of analysis:
PS: 0.35 hPa, rU,rV: 1 m/s*(Kg/m3), q: 0.4 K, Qv: 5% of RH
12 hour breeding cycle from 12 UTC 09 July 2004, targeting 13 July 2004
Initial perturbations for 18 hour forecast from 12 July 2004 are doubled
Errors in the former experiment have been fixed
Initial : 2004.07.12 12 UTC BGM method
FT=06
FT=12
CNTL
M01p
M01m
M01p
M03p
12 July 2004 12UTC initial FT=18 RR6
Different results in different members
100
10
8
RA
M04p
6
01p-12p
01m-12m
コントロール
RA
ENSmean
80
01p-12p
01m-12m
コントロール
RA
mean
M11m
M04p
M08p
60
M08p
M05p
M03p
M10p M03p
M05m
40
4
M01m
コントロール
コントロール
M10p
M01p
M01p
M10m
2
20
M03m
M03m
M10m
M01m
0
0
0
10
20
30
40
50
0
20
40
60
80
100
120
140
160
180
200
100
10
8
RA
01p-12p
01m-12m
コントロール
RA
ENSmean
01p-12p
01m-12m
コントロール
RA
mean
80
6
60
M01p
4
M03p
M10p
M12p
M05p
M11m
M01p
M02p
M06p
40
M04m
M03p コントロール
M04p
M02m
2
コントロール
M03m
M04p
M01m
20
M01m
0
0
0
10
20
30
40
50
0
20
40
60
80
100
120
140
160
180
200
Predicted precipitation over a
rectangle domain in northern
Japan 400km×250km.
Horizontal and vertical axis is
for FT=0-6 and FT=12-18,
respectively.
Left: Area averaged value,
Right: peak value.
In case of global EPS
perturbations.
Same as in upper figures.
In case of BGM perturbations.
100
10
8
RA
M04p
6
01p-12p
01m-12m
コントロール
RA
ENSmean
80
01p-12p
01m-12m
コントロール
RA
mean
M11m
M04p
M08p
60
M08p
M05p
M03p
M10p M03p
M05m
40
4
M01m
コントロール
コントロール
M10p
M01p
M01p
M10m
2
20
M03m
M03m
M10m
M01m
0
0
0
10
20
30
40
50
0
20
40
60
80
100
120
140
160
180
200
100
10
8
RA
01p-12p
01m-12m
コントロール
RA
ENSmean
01p-12p
01m-12m
コントロール
RA
mean
80
6
60
M01p
4
M03p
M10p
M12p
M05p
M11m
M01p
M02p
M06p
40
M04m
M03p コントロール
M04p
M02m
2
コントロール
M03m
M04p
M01m
20
M01m
0
Enlarged view M03p
0
0
10
Predicted precipitation over a
rectangle domain in northern
Japan 400km×250km.
Horizontal and vertical axis is
for FT=0-6 and FT=12-18,
respectively.
Left: Area averaged value,
Right: peak value.
In case of global EPS
perturbations.
20
30
40
50
0
20
40
60
80
100
120
140
160
180
200
摂動計算時刻にFT=6を用いていた誤
り発見
Future works
・Reexamination of BGM cycle and perturbation magnitude
・Perturbation in lateral (and lower) boundary conditions
・(Orthogonalization, stochastic seeding)
・Evaluation of EPS performance (application to B08RDP)
・Evaluation of forecast and analysis errors from EPS
・Application of LETKF to ensemble update