Transcript Slide 1

Potential use of Sargassum cinereum
biomass for removal of Lead: Kinetics,
Isotherms, Thermodynamic and
Characterization Studies
Kishore Kumar Kadimpati
Siva Jyothi Jonna
Point and Nonpoint Sources
Collection and preparation of biomass
Collected from Andaman Nicobar islands, washed
thoroughly to remove debris, shade dried
powdered in domestic mixer. Powdered biomass
is rinsed with demineralized water and dried in
oven at 70C, sieved trough 100 sieve and
stored in dehumidifier for further studies.
Mallareddy College of Pharmacy
The major advantages of biosorption over conventional
treatment methods include
¯ Low cost
¯ High efficiency
¯ Minimization of chemical and biological
sludge
¯ No additional nutrient requirement
¯ Regeneration of biosorbent and
¯ Possibility of metal recovery
Mallareddy College of Pharmacy
MODEL CALCULATION
To determine the metal calculations in the parameters the
following equation is used:
Where
qe = metal uptake (mg/g).
V = volume of metal solution (lit).
Ci = Initial concentration (mg/L).
Cf = Final concentration (mg/L).
w = Mass of the adsorbent (gm).
Pb (II)-Equilibrium time
55
50
Initial Lead (II) concentration, mg/L
45
40
35
30
25
20
15
10
5
0
20
40
60
80
100
120
140
Time, min
5 g/L
10 g/L
15 g/L
Mallareddy College of Pharmacy
20 g/L
160
Effect of pH
8
qe, mg/g
6
4
2
0
0
20
40
60
Ce, mg/L
pH 3
pH 4
pH 5
pH 6
Mallareddy College of Pharmacy
80
85
Effect of Initial metal Conc.
75
70
65
60
0
50
100
150
Initial Pb (II) concentration, mg/L
pH 3
pH 4
pH 5
pH 6
200
8
7
6
qe, mg/g
% Removal of Lead (II)
80
5
4
3
2
1
0
0
50
100
Initial Pb(II) concentration, mg/L
pH 3
pH 4
Mallareddy College of Pharmacy
pH 5
pH 6
150
200
Effect of Biomass weight
85
80
% Removal of Pb (II)
75
70
65
60
55
50
45
0
2
4
6
8
10
12
14
16
18
Biomass weight, g/L
24.8 mg/L
48.3 mg/L
96.3 mg/L
148.2 mg/L
Mallareddy College of Pharmacy
186.7 mg/L
20
Effect of Biomass weight
45
40
35
qe, mg/g
30
25
20
15
10
5
0
0
2
4
6
8
10
12
14
16
18
Biomass weight, g/L
24.8 mg/L
48.3 mg/L
96.3 mg/L
148.2 mg/L
Mallareddy College of Pharmacy
186.7 mg/L
20
Effect of Temperature
85
% Removal of Lead (II)
80
75
70
65
60
55
295
300
305
310
315
320
Temperature, K
24.8 mg/L
48.3 mg/L
96.3 mg/L
148.2 mg/L
Mallareddy College of Pharmacy
186.7 mg/L
325
Pb(II)- Freundlich Isotherm
0
-
TEMP K
KF{mg
g
1
-1 n
)(mg L ) }
2.95053
1.283532
0.9981
308
4.762116
1.216545
0.9997
313
6.343077
1.162115
0.9987
323
9.206615
1.130454
0.9998
0.7
0.6
0.5
log qe
0.4
0.3
0.2
0.1
0
-0.1
-0.2
0.75
298 K
1
log Ce
308 K
1.25
313 K
1.5
1.75
2
R
298
0.8
0.5
n
2
323 K
Mallareddy College of Pharmacy
Pb(II)- Langmuir Isotherm
Temp
298
308
313
323
Ce/qe=Ce/qm
+1/KLqm
qm
1/KL
KL
298
9.756098
50.93659
308
10.02004
66.52505
313
12.67427
109.4829
323
14.51379
154.3541
R2
0.019632
0.015032
0.009134
0.006479
0.9698
0.9482
0.9931
0.9694
16
Ce/qe
13
10
7
4
4
24
298 K
44
Ce, mg/L
308 K
313 K
64
84
323 K
Mallareddy College of Pharmacy
Pb(II)- Thermodynamics
0.7
0.6
log (Cad/Ce)
0.5
0.4
0.3
0.2
0.1
0
0.003075
0.003125
24.8 mg/L
0.003175
48.3 mg/L
0.003225
1/T
96.3 mg/L
0.003275
148.2 mg/L
0.003325
0.003375
186.7 mg/L
CT
Enthalpy Change is negative, so the process is
Exothermic nature.
Gibbs free Energy change is negative it indicates
spontaneous process.
24.86
48.319
96.34
148.23
186.71
DH
-35.0393
-30.0725
-30.1357
-25.8506
-24.7362
Mallareddy College of Pharmacy
DS T
-104.488
-89.5282
-90.4626
-77.5612
-74.5437
298
308
313
323
Dg=h-ts
31.10235
27.54462
28.28465
25.02643
31.10235
Pb(II)- Kinetics
First order kinetics
0.8
0.6
0.4
log (qe-qt)
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
-1.2
0
10
20
30
0.25 g
40
Time, min50
0.50 g
60
0.75 g
70
80
1g
Mallareddy College of Pharmacy
90
100
Pb(II)- Kinetics
Pseudo Second order kinetics
80
B.W
70
qe2*constant K
0.1 g
7.686395
237.9238
0.001355
0.25 g
4.00641
96.43634
0.01037
50
0.5 g
2.816901
54.77959
0.018255
40
1g
2.250731
33.49399
0.029856
60
t/qt, min mg/g
qe
30
20
10
0
0
20
40
60
80
100
120
140
160
Time, min
0.25 g
0.50 g
0.75 g
1g
From the Equilibrium kinetics second –
order model is well satisfied.
Mallareddy College of Pharmacy
Unloaded S. cenereum
Pb (II) loaded S. cenereum
Mallareddy College of Pharmacy
S.No
1
Band shift position, cm-1
Un loaded
Loaded with Description
Biomass
Pb2
2947.68
2918
C–H stretching vibrations due to lignins
(Ahmet et al., 2007)
2
2145.97
2156
Thiocyanate (–SCN)
3
1925.97
1964
Combination of aromatic bonds
4
1508.85
---------
–NH stretching vibration at peptidic bond of
protein (Hui and Yu, 2007)
5
1459.80
1439
Symmetric bending vibrations of alkane
bonds (–CH3) (Ahmet et al., 2007)
6
1098.65
1078
C–N, PO34 (ortho phosphate) and organic
siloxanes (Deepa et al., 2007)
6
1007.60
1013
C–O characterized by polysaccharides in the
biomass (Sujoy and Arun, 2007)
7
876.73
865
(–CH)- 1,3 substitution at aromatic aryl rings
8
798.80
---------
presence of siliceous (Si–C) (Vítor et al,
2009) of Pharmacy
Mallareddy College
Unloaded S. cenereum
After Pb+2 adsorption the particles have
granular, complex, uneven and porous
surface textures that were not found in
the native biomass S. Cinereum algal
powder. The similar results were
observed in case of Cd+2, Cu+2 on the
surface of the Acacia leucocephala bark
powder (Subbaiah et al., 2010).
Pb (II) loaded S. cenereum
Mallareddy College of Pharmacy
Conclusions
• Uptake of metal ions by adsorbent increases with increases in
adsorbate concentration.
• Uptake of metal ions increases with increase in pH of solution up to
certain extent and then decreases.
• Decline in sorption capacity with increasing the temperature may be
attributed to the physical adsorption.
•
From the linear Isotherm analysis it is clear that the Freundlich
Isotherm well satisfied than Langmuir models.
•
The coefficients of the model equation are good agreement with the
values obtained in graphical analysis.
•
The metal uptaking capacity is 7.22 mg/g at pH 5.
Mallareddy College of Pharmacy
• The significant change in the wave number reveals, that the
involvement of the C–H stretching vibrations (lignins) (Ahmet
et al., 2007) and Thiocynates in the biosorption process
• After Pb+2 adsorption the particles have granular, complex,
uneven and porous surface textures that were not found in
the native biomass S. Cinereum algal powder.
• S. Cinereum is promising biomass useful for the removal of
Pb(II) from waste water.
Mallareddy College of Pharmacy
Authors are thankful to DST-SERB
(SERB/F/4631/2013-14 dated 17.10.2013) for
the financial support for this work.
Mallareddy College of Pharmacy
1. Volesky. B., Holan, Z. (1995). Biosorption of heavy metals. Biotechnol. Prog. 11, 235-250.
2. Volesky. B., Holan, Z., Prsetyo, I. (1993). Biotechnol.Bio engineering, 41, 819-825.
3. Verma, N., Rehal, R. (1996) Removal of Chromium by Albizia libbeck pods from industrial
wastewater. J. ind. Pollut. Control.,12(1) 55-59
4. Prakasham, R.S., Sheno Merrie, J., Sheela, R., Saswathi, N., Ramakrishna, S.V. (1999)
Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environmental
Pollution. 104 (3) 421-427.
5. Patterson. J. B., “Waste water treatment”, Science Publishers, 1977.
6. Volesky. B., “Sorption and Biosorption”, BV Sorbex, Inc. 1999.
7. Macaski. L. E., Dean. A. C. R., in A. Mizrahi (ed), “Advances in Biotechnological Processes”,
Biological waste treament, Alan R. Liss, 12 (1989) 159-201.
8. Ting. Y. P., Lawson. F., Prince. I. G., Biotechnol. Bioeng., 34 (1989) 990-999.
9. Aksu. Z., Sag. Y., Kutsal. T., Environ. Technol. 11(1990) 33-40.
10. María Mar Areco, María dos Santos Afonso, Copper, zinc, cadmium and lead biosorption by
Gymnogongrus torulosus. Thermodynamics and kinetics studies, Colloids and Surfaces B:
Biointerfaces 81 (2010) 620–628.
11. Aravindhan Rathinam, Bhaswant Maharshi, Sreeram Kalarical Janardhanan, Raghava Rao
Jonnalagadda, Balachandran Unni Nair, Biosorption of cadmium metal ion from simulated
wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study,
Bioresource Technology 101 (2010) 1466–1470.
Mallareddy College of Pharmacy
Mallareddy College of Pharmacy