Transcript Slide 1
T3. DESIGN OF TIMBER BEAM Floor plan Timber framed structure Beam: linear member subjected to bending and shear (N=0). Example: Check of beam G1, design secondary girder spacing. page 1. T3. Design of timber beam I. Design of beam G1 I.1. Geometry, model, loads I.1.1. Model, Geometry: Cross-sectional Data: b h leff = I.1.2. Loads: floor Dead load: self-weight kN gK 2 m g ,sup 1.35 Floor layers: 2 cm glued ceramic 6 cm reinforced concrete subbase 1 layer PE foil 2 cm TDP sound insulating layer 2.2 cm OSB deck 50 150 secondary girder (spacing: 0.8m) 5 cm floating layer 1.9 cm boarding 1 layer plasterboard g Kföd Σ page 2. T3. Design of timber beam kN m2 - Load of partition walls (see T1 practical): q 1.5 - Live load (variable load): q Kfloor (balcony: qKbalc floor pEd g gK q qKfloor Load on the beam G1: Self-weight and floor load (approximately): beam Self-weigth of the beam: g Ed 1 floor 4.8 beam beam pEd pEd g Ed 2 2 I. 2. Calculation of internal forces VEd 5 pEd leff 8 M Ed p Ed l eff2 8 I. 3. Ultimate limit state: Strength analysis: I.3.0. Material properties Timber: homogenous, anizotropic, linear-elastic material model Idealized - diagram page 3. T3. Design of timber beam kN ) m2 Study Aid for Timber Structures (ST) For all strength values: f f d kmod k design value modification factor M caracteristic value safetyfactor Here: Grade of material: GL28h (ST) medium term load, service class 1. kmod= (ST) glued laminated timber M= Design value of bending strength: f m,d kmod f m, k M Design value of shear strength: f v,d kmod f v ,k M page 4. T3. Design of timber beam I.3.1. Bending Always elastic! Force equilibrium : N 0 Moment equilibrium: at limit state M M Rd M Rd Wel , y f m,d elastic section modulus : bh3 Iy bh2 Wel , y 12 h ymax 6 2 M Rd M Rd M Ed I.3.2. Shear bh2 VS y 8 1.5V I b V 3 bh bh b y 12 VRd f vd Vc,Rd 2 bh Sy 8 bh 1.5 VEd page 5. T3. gyakorlat: Fa gerenda méretezése I.4. Buckling analysis: - Lateral-torsional buckling I.5. Serviceability limit state: Deflection Creep has to be taken into account! (ST) w fin, g winst , g (1 k def ) w fin,q k def winst ,q (1 2 k def ) 2 wfin wfin, g wfin,q wfin, p p fin gk 1 kdef qk 1 2kdef E0.mean (ST) I y 4 5 p fin l w fin 384 E0,mean I y allowed deflection: page 6. T3. Design of timber beam II. Design of secondary girder F1 Design spacing of secondary girders considering the size of OSB-board! t=? Possible spacing: II.1 Loads, Geometry, model Cross-sectional data: board Model: simple supported beam b leff = h Floor load transferred to the secondary girder: floor pEd II.2. Internal forces V Ed 1m pEd leff 2 M Ed 1m 2 pEd leff 8 page 7. T3. Design of timber beam II.3. Ultimate limit state: Strength analysis II.3.0. Material properties Grade of material: f m,d C24 (ST) 0.8 f m,k 1.3 M 1.3 f v ,d kmod 0.8 0 .8 f v ,k 1 .3 II.3.1. Bending design: (elastic analysis) M Rd Wel , y f m,d M Rd M Ed t max II.3.2. Shear bh 1 .5 VRd VEd VRd f v ,d t max talk II.4. Stability analysis -lateral-torsional buckling: II.5. Serviceability limit state: Deformation analysis page 8. T3. Design of timber beam