Transcript Slide 1
T10. ECCENTRICALLY COMPRESSED WALLS + PREFABRICATED REINFORCED CONCRETE FLOOR Masonry structure + pre-fabricated R.C. floor with type „E” pre-stressed R.C. beams Floor plan Example: Checking pre-fabricated reinforced concrete beams Checking axially compressed masonry walls F2 Design of axially compressed masonry wall F4 (next class: bracing system contains F1-F2-F3 walls) T10. Eccentrically compressed walls page 1. I. Design of pre-fabricated reinforced concrete floor I.1. Geometry, model, loads I.1.1. Model, Geometry: pre-fabricated r.c. floor constructions with beams type E: Always simple supported! beam (SR. p.55. and 56.) Minimal bearing is 10 cm below clear span 4,8 m, above it is 12 cm min here : l beam Required beam type: E7-60 Data of pre-stressed concrete floor beams type E: Jel E7-24 E7-30 E7-36 E7-42 E7-48 E7-54 E7-60 E7-66 Jel E7-24 E7-30 E7-36 E7-42 E7-48 E7-54 E7-60 E7-66 leff cm 252 312 372 432 492 558 618 678 19 cm high concrete floor blocks 19 cm magas béléstest MRd qRD Mqp qqp kNm kN/m kNm kN/m 20,00 20,77 14,15 17,83 20,00 16,10 14,15 11,63 20,00 11,56 14,15 8,18 20,00 8,57 14,15 6,07 20,00 6,61 14,15 4,68 20,00 5,14 14,15 3,64 20,00 4,19 14,15 2,96 20,00 3,48 14,15 2,46 Mfr kNm 17,60 17,60 17,60 17,60 17,60 17,60 17,60 17,60 qfr kN/m 22,17 14,46 10,17 7,54 5,82 4,52 3,69 3,06 leff cm 252 312 372 432 492 558 618 678 24 cm24 high floor blocks cmconcrete magas béléstest MRd qRD Mqp qqp kNm kN/m kNm kN/m 24,70 20,77 16,20 20,41 24,70 16,10 16,20 13,31 24,70 13,14 16,20 9,37 24,70 10,59 16,20 6,94 24,70 8,16 16,20 5,35 24,70 6,35 16,20 4,16 24,70 5,17 16,20 3,39 24,70 4,30 16,20 2,82 Mfr kNm 20,70 20,70 20,70 20,70 20,70 20,70 20,70 20,70 qfr kN/m 26,08 17,01 11,97 8,87 6,84 5,32 4,34 3,60 page 2. T10. Eccentrically compressed walls I.1.1. Loads: floor Dead load kN gK 2 m g ,sup 1.35 -Self-weight: Floor layers: 2 cm glued ceramics 6 cm concrete topping 3 cm floating layer (EPS) + foil Prefabricated floor Σ g Kfloor Live load: Variable load: qKfloor load of light partition walls: qK q 1.5 floor .pEd Design value of the load of one beam (concrete floor blocks 60 cm): 60 p beam Ed Double beam with 24 cm high concrete floor blocks: 60 p beam Ed page 3. T10. Eccentrically compressed walls II. Checking axially compressed wall F1 II.1. Geometry, model, loads, internal forces II.1.1. Model, Geomety: h=3.00 m t=300 mm II.1.1. Loads, internal forces: PEdfloor g wall Ed II.2. Material properties inhomogenous, anizotropic, linear elastic material model, without tensile strength, compressive strength: f k K fb0.7 f m0.3 where f b is thecompressive strengthof brick, for Porotherm30 f b f m is thecompressive strengthof masonrymortar,for masonrymortarM3 f m is thefunctionof thegroup of masonry,typeof mortarand typeof bonding, for Porothermmasonry: K K fk Safety factor: Attestation of conformity: category: 3, material of masonry: class I, 2.2 M fd fk M T10. Eccentrically compressed walls page 4. II.3. Ultimate limit state: strength analysis Axially compressed wall is also eccentrically compressed! eccentricity : ez M zd M einit 0.05t here: zd 0 N zd N zd einit h0 /450initialeccentricity (secondeffect,construction inaccuracy... ) ez einit No tensile strength, plastic strength analysis (at the top and at the bottom of the wall): N 1Rd,3, y (t 2e1,3, z ) f d N 1Rd,3, y N Edmax N 3Ed or : N 1Rd,3, y (1 - 2 e1,3,z )tf d 1,3, y tf d t II.4. Stability analysis N Rd , y y t f d N Ed calculation of based on the slenderness of wall and the eccetricity of loads: slenderness of wall : h0 h , t h0 / t Capacity reduction factor at the midheight of the wall : 2, y e2 , h0 / t 0.84 (Table) N Rd2 , y 2, y tf d T10. Eccentrically compressed walls N Ed2 page 5. III. Design of axially compressed wall F4 III.1. Geometry, model, loads, internal forces 3,00 m l= ? 30 B P1 Monolithic RC beam h= leff leff t N B ger t= ger p Edföd g Edger B ger g Edfal B ger 10 föd p g Edger l eff 8 Ed III.2. Material properties See previous example B ger g Edfal km 469.87 kN 1 475.25 kN 2 481.18 kN 3 fd page 6. T10. Eccentrically compressed walls II.3. Strength analysis Eccentricity : M zd 0 ez einit h0 / 450 0.05t N zd ez Plastic analysis (at top and at bottom of wall: c-s 1,3): N 1Rd,3, y (t 2e1,3, z )lf d N 1Rd,3, y N Edmax lszüks II.4. Stability analysis NRd , y y t l f d N Ed h0 h t h0 / t lalk ez / t At midheight of wall (c-s 2): 2, y ez / t, h0 / t N Rd2 , y 2, y t l f d N Ed2 lszüks IV. Eccentrically loaded masonry walls 380 190 190 fal PEd 100 280 140 140 PEdföd ez 7. page T10. Eccentrically compressed walls