Transcript Document
Рациональные числа. Какие числа называют отрицательными; противоположными? Числа, расположенные на Противоположными называют координатной прямой левее числа, отличающиеся друг от начала отсчета называют друга только знаком. отрицательными Сравните следующие числа: -2,8 и -1 0 и–4 -1,4 и 0,25 |-0,1| и -100 -2,8 < -1 0 >–4 -1,4 < 0,25 |-0,1| > -100 Сформулируйте правила сложения •Двух отрицательных чисел •Чисел с разными знаками чтобы сложить два • Чтобы сложить числа с разными отрицательных числа, знаками нужно из большего модуля нужноменьший, сложить их модули вычесть и перед и перед полученным полученным результатом поставить результатом поставить знак большего модуля знак минус Сформулируйте правила умножения и деления •Двух отрицательных чисел •Чисел с разными знаками •Чтобы умножить два отрицательных числа нужно перемножить их модули • Чтобы перемножить два числа с разными знаками, нужно перемножить их модули и перед полученным результатом поставить знак минус Выполните действия: -12,3+1,23 -2,5+(- 8,7) (0,4+(-0,5))+(-1,25) Сформулируйте правило вычитания и выполните действия 1,25-3,8 4,5-(-0,9) -2,4-3,5-1,1 Определение рационального числа Число, которое можно записать в виде отношения где а –целое число, n - натуральное число, называют рациональным Рациональные числа Целые числа 5 1 10 10 1 0 0 1 5 + Дробные числа 53 100 214 2,14 100 2 23 3 7 7 0,53 а, n Свойства рациональных чисел Любое целое число а является рациональным числом, т.к. его можно записать в виде а . 1 Сумма, разность и произведение рациональных чисел тоже рациональные числа 3 6 21 24 3 4 7 28 28 3 2 1 16 3 3 5 5 5 5 2 3 1 1 3 10 2 Если делитель отличен от нуля, то частное двух рациональных чисел тоже рациональное число 3 1 3 4 1 :2 8 4 8 9 6 7 7 :16 16 Периодические дроби Выразим обыкновенные дроби в виде десятичных дробей: 3 3 : 8 0,375 0,375000... 0,375(0) 8 2 2 : 3 0, 666... 0, (6) 3 3 3 :11 0, 2727... 0, (27) 11 5 5 : 6 0,8333... 0,8(3) 6 Любое рациональное число можно представить в виде десятичной или периодической дроби Какие числа называют рациональными? Число, которое можно записать в виде отношения a n , где а - целое число, а n - натуральное Любое целое число а является рациональным числом, так как его можно записать в виде а 1 5 5 1 12 12 1 Сумма, разность и произведение рациональных чисел тоже рациональное число. Если делитель отличен от нуля, то частное двух рациональных тоже рациональное число. Любое рациональное число можно записать либо в виде десятичной дроби ( в частности, целого числа), либо в виде периодической дроби. В классе: №1178 № 1179 Дома: П 37 № 1196 № 1197