Transcript Document
Monitoring Interlayer Formation by Infrared Spectroscopy in Layered Reactive Polymer Blends J. Lia,b, M. Prustya,c, H. Goossensa,c a Eindhoven University of Technology - Department of Chemical Engineering and Chemistry- Laboratory of Polymer Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands b c Fudan University -Department of Macromolecular Science, 200433 Shanghai, China Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands /Faculty of Chemical Engineering & Chemistry 1 Outline Introduction Objective Modification of SAN in solution On-line Monitoring interlayer reaction by ATR-FTIR in layered reactive polymer blends Future work /Faculty of Chemical Engineering & Chemistry 2 Introduction Polymer blends : Combination of existing polymers Advantage: Disadvanatage: Cheap Immiscibility Tuning properties easily Coarse phase morphology high property/cost performances C. Koning, Prog. Pol. Sci (1998), 707 /Faculty of Chemical Engineering & Chemistry 3 In situ compatibilization by reactive blending A/B immiscible blend A/B X-functionalized A* X-functionalized C* (miscible with A) A B B-Y + Y-functionalized B* Y-functionalized D* (miscible with B) /Faculty of Chemical Engineering & Chemistry block or grafted copolymers “in situ” 4 Introduction Reactive blending: Reactive additive for phase (A) Reactive additive for phase (B) In situ generated copolymer Y X’ Y’ X (A)-graft-(B) X Y X’ Y’ (A)-branch-(B) C. Koning, Prog. Pol. Sci (1998), 707 /Faculty of Chemical Engineering & Chemistry 5 Objective Understand the reactive blending process from a fundamental point of view ---- the competition between processes like diffusion to interface and reaction between the components inside the interface /Faculty of Chemical Engineering & Chemistry 6 Oxazoline: Universal compatibilizer R'CONOCR R'CONHCH2CH2SOCR CH2CH2Cl RCOCl RCOSH R' R'CONHCH2CH2OOCR RCOOH O N RX R'CONCH2CH2X R ROH R'CONHCH2CH2OR RNH 2 R'CONHCH 2CH 2NHR B.M. Culberston, Prog. Pol. Sci (2002), 579 /Faculty of Chemical Engineering & Chemistry 7 Modification of SAN in solution + OH H 2N N AE SAN + N O Polymer-COOH N SAN-oxazoline N O NH CH2 CH2 O O Polymer Reaction scheme /Faculty of Chemical Engineering & Chemistry 8 Polymer modification Materials: SAN, AE, catalyst, DCB (solvent) Procedure: Precipitation: 5 wt% of polymer in chloroform and then add to it 10 times methanol Drying: 48 hrs. at 45 °C Parameters: Ratio AN/AE, different catalysts, catalyst concentration, temperature and reaction time. /Faculty of Chemical Engineering & Chemistry 9 Characterization (Mid-IR) 1.4 0.70 SAN SAN-oxa 1.2 0.65 Phenyl SAN 1hr 2hrs 3hrs 4hrs 6hrs 8hrs 0.60 0.55 0.50 0.45 0.8 Nitrile absorbance absorbance 1.0 0.6 Oxazoline 0.4 0.40 0.35 0.30 0.25 0.20 0.15 0.2 0.10 0.0 0.05 0.00 -0.2 -0.05 2400 2200 2000 1800 1600 1400 -1 wavenumber (cm ) /Faculty of Chemical Engineering & Chemistry 1710 1700 1690 1680 1670 1660 1650 1640 1630 -1 wavenumber (cm ) 10 1620 Kinetics of solution modification oxa( 1:1, 2%) 0.012 oxa(mmol) 0.01 130 °C 0.008 140 °C 0.006 150 °C 0.004 160 °C 0.002 0 0 2 4 6 8 10 tim e(hrs) K = 6.4*104exp(-10.2*103/T) ( g/mmol·min) /Faculty of Chemical Engineering & Chemistry 11 oxa(1:1,4% cat) oxa( 1:1, 2% cat) 0.012 0.012 0.01 130 °C 0.008 140 °C 0.006 150 °C 0.004 160 °C 0.002 oxa(mmol) oxa(mmol) 0.01 130 deg 0.008 140 deg 0.006 150 deg 0.004 160 deg 0.002 0 0 2 4 6 8 0 10 0 2 tim e(hrs) 0.02 0.025 130 deg 0.015 140 deg 150 deg 0.01 160 deg oxa(mmol) oxa(mmol) 0.03 0 10 tim e (hrs ) /Faculty of Chemical Engineering & Chemistry 140 deg 150 deg 0.01 0 8 130 deg 0.015 0.005 6 10 0.02 0.005 4 8 oxa(1:4,4%cat) 0.025 2 6 tim e(hrs) oxa(1:4,2% cat) 0 4 160 deg 0 5 10 tim e(hrs) 12 On-line monitoring of interfacial reaction by ATR-FTIR Materials: SAN-oxazoline (1.9 ~5.4 wt% oxazoline) poly (ethylene-co-methacrylic acid) (15 wt% acid) Sample: a b a: thin film of SAN-oxazoline (100nm~ 400nm) /Faculty of Chemical Engineering & Chemistry b: thick film of PE-co-MA (~ 0.5mm) 13 Instrumental set-up 400nm evanescent wave d IRE IR radiation detector d=1~2 µm /Faculty of Chemical Engineering & Chemistry 14 Results O O P C OH + P' 0.07 0.06 absorbance 0.05 0.04 0min 10min 20min 30min 60min 90min 117min AmideNI Oxazoline n Ester O O P C 190 oC O N P' C n Amide II 120 oC 0.03 5.4 wt% oxazoline 0.02 400nm SAN-oxa layer 0.01 0.00 1850 1800 1750 1700 1650 1600 1550 1500 1450 -1 Wavenumber (cm ) /Faculty of Chemical Engineering & Chemistry 15 Difference Spectroscopy Amide I Ester 0.035 0.030 0.025 0.020 Oxazoline absorbance 0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015 -0.020 1760 1740 1720 1700 1680 1660 1640 1620 -1 wavenumber (cm ) /Faculty of Chemical Engineering & Chemistry 16 Intensity Vs. Time oxazoline amide I amideII ester 0.55 0.50 0.45 0.40 intensity [a.u.] 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 20 40 60 80 100 120 140 160 time [min] /Faculty of Chemical Engineering & Chemistry 17 Mirror image original origianl oxazoline amide I amideII ester 0.55 0.50 0.45 0.40 After reversal 0.6 oxazoline amide I amideII ester 0.5 0.4 intensity/a.u. intensity [a.u.] 0.35 0.30 0.25 0.20 0.15 0.3 0.2 0.10 0.05 0.1 0.00 -0.05 0.0 -0.10 -0.15 20 40 60 80 100 120 140 20 160 40 60 80 100 120 140 160 time/min time [min] oxazoline amide I amideII ester 1.0 0.9 0.8 overlapping intensity/a.u. 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 20 40 60 80 100 120 140 160 time/min /Faculty of Chemical Engineering & Chemistry 18 Effect of temperatures o 150 C o 160 C o 170 C o 180 C o 190 C o 200 C 0.50 0.45 0.40 intensity [a.u.] 0.35 Equilibrium ? 0.30 0.25 0.20 0.15 Diffusion limitation ? 0.10 0.05 0.00 -0.05 -20 0 20 40 60 80 100 120 time [min] /Faculty of Chemical Engineering & Chemistry 19 Step annealing І: 0.5 o o 190 C 2hrs to 170 C 0.5 hr o 190 C 2hrs intensity [a.u.] 0.4 0.3 Equilibrium ? 0.2 0.1 0.0 -20 0 20 40 60 80 100 120 140 160 time [min] 190 oC ~170 oC /Faculty of Chemical Engineering & Chemistry 20 Step annealing II: 0.7 o 190 C o o 150 C 3hrs to 190 C 1hr o o 160 C 3hrs to 190 C 1hr o o 170 C 3hrs to 190 C 1hr 0.6 intensity [a.u.] 0.5 0.4 0.3 0.2 0.1 0.0 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 time [min] 150 oC/160 oC/170 oC ~ 190 oC /Faculty of Chemical Engineering & Chemistry 21 Step annealing II: 0.7 o 190 C o o 150 C 3hrs to 190 C 1hr o o 160 C 3hrs to 190 C 1hr o o 170 C 3hrs to 190 C 1hr 0.6 intensity [a.u.] 0.5 0.4 0.3 Slope Slope in curve of 190oC 0.2 150oC ~ 190oC 0.00707 0.00679 0.1 160oC ~ 190oC 0.00329 0.00405 170oC ~ 190oC 0.00148 0.00141 0.0 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 time [min] 150 oC/160 oC/170 oC ~ 190 oC /Faculty of Chemical Engineering & Chemistry 22 Effect of content of oxazoline 3.45/1.9 0.5 1.9% 3.45% 5.4% intensity [a.u.] 0.4 0.3 5.4/1.9 ratio of oxazoline's content 1.815789 2.842105 ratio of amide I's intensity 1.974067 2.91471 0.2 0.022 0.020 0.1 slope 0.018 0.016 0.0 0.014 initial slope Temp. =190 oC 0.012 0.010 0.008 0.006 0.004 0.002 -20 0 20 40 60 80 100 120 140 time [min] /Faculty of Chemical Engineering & Chemistry 160 0.000 -0.002 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 content of oxazoline (%) 23 Effect of thickness of SAN-oxazoline layer 0.45 100nm 400nm 0.40 Intensity [a.u.] 0.35 0.30 0.25 0.20 0.15 0.10 Temp. =190 oC 0.05 0.00 0 20 40 60 80 100 120 time [min] /Faculty of Chemical Engineering & Chemistry 24 Solution mixture of SAN and SAN-oxa 1.9% 5.4% mixture, 1.9% 0.4 intensity [a.u.] 0.3 0.2 0.1 Temp. =190 oC 0.0 0 20 40 60 80 100 120 140 time [min] /Faculty of Chemical Engineering & Chemistry 25 Conclusions ATR-FTIR can be used to monitor the interfacial reaction between oxazoline and acid groups and follow the kinetics. There is no side reaction in the system. It’s not an equilibrium reaction. low temperature – higher diffusion limitation and vice versa. The thickness of SAN-oxa layer and the position of the oxazoline group in SAN is not important for the reaction. /Faculty of Chemical Engineering & Chemistry 26 Future Work ATR-FTIR: do quantitative analysis on the data Ellipsometry: follow the interlayer formation The ellipsometry data will be correlated with the infrared data Off-line investigation of the stretching process by FTIR /Faculty of Chemical Engineering & Chemistry 27 Acknowledgement Otto van Asselen, TU/e Edgar Karssenberg, TU/e Martin van Duin, DSM Research, Geleen, The Netherlands Gert de Wit, GE Advanced Materials, Bergen op Zoom, The Netherlands Colleagues in the faculty of Chemical Engineering & Chemistry of TU/e /Faculty of Chemical Engineering & Chemistry 28 Thanks for your attention ! /Faculty of Chemical Engineering & Chemistry 29 /Faculty of Chemical Engineering & Chemistry 30 Introduction Morphology developement viscosity of phases,interfacial properties, blend composition, processing conditions C. Koning, Prog. Pol. Sci (1998), 707 /Faculty of Chemical Engineering & Chemistry 31 Capillary Number ---- Drop deformation . c R Ca R Shear stress Interfacial tension R Drop size. /Faculty of Chemical Engineering & Chemistry 32 Why oxazoline?? O O P OH + P' P NH2 P' O O O + OH + OH O O P N P OH + O P' O P' O O O P NH2 + P' P' O NH2 O P(arom.) < P(aliph.) O + P O P’(arom.) < P’(aliph.) Macosko et al., Polymer 42 (2001), 8171 /Faculty of Chemical Engineering & Chemistry 33 Ellipsometry The evolution of interface with time under different temperatures /Faculty of Chemical Engineering & Chemistry 34 Model for Ellipsometry /Faculty of Chemical Engineering & Chemistry 35 Off-line investigation of the stretching process by FTIR /Faculty of Chemical Engineering & Chemistry 36 FTIR Microscopy /Faculty of Chemical Engineering & Chemistry 37 Conversion of oxazoline conersion of oxa at 983cm-1 under 190deg 100.0000 90.0000 80.0000 70.0000 conversion/ % Which one is better boarder baseline in diff spec curve fitting 60.0000 50.0000 narrow er baseline in diff spec 40.0000 30.0000 20.0000 10.0000 0.0000 0.0000 Conversion of oxa under 170deg 50.0000 100.0000 150.0000 200.0000 70.0000 time/min 60.0000 conversion/ % 50.0000 1660 boarder baseline 40.0000 983 boarder baseline 30.0000 1660->980 20.0000 curve fitting for 983cm-1 10.0000 0.0000 -10.0000 0 20 40 60 80 100 120 140 160 time/min /Faculty of Chemical Engineering & Chemistry 38 5.4% SAN-oxa with catalyst 5.4% without catalyst 190deg 2hrs /Faculty of Chemical Engineering & Chemistry 39 5.4% with 55wt% catalyst (to oxazoline) 190deg 2hrs /Faculty of Chemical Engineering & Chemistry 40