Transcript Document

Monitoring Interlayer Formation by
Infrared Spectroscopy in Layered
Reactive Polymer Blends
J. Lia,b, M. Prustya,c, H. Goossensa,c
a
Eindhoven University of Technology - Department of Chemical Engineering and
Chemistry- Laboratory of Polymer Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b
c
Fudan University -Department of Macromolecular Science, 200433
Shanghai, China
Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
/Faculty of Chemical Engineering & Chemistry
1
Outline
 Introduction
 Objective
 Modification of SAN in solution
 On-line Monitoring interlayer reaction by
ATR-FTIR in layered reactive polymer blends
 Future work
/Faculty of Chemical Engineering & Chemistry
2
Introduction
Polymer blends : Combination of existing polymers
Advantage:
Disadvanatage:
Cheap
Immiscibility
Tuning properties easily
Coarse phase morphology
high property/cost performances
C. Koning, Prog. Pol. Sci (1998), 707
/Faculty of Chemical Engineering & Chemistry
3
In situ compatibilization by reactive blending
A/B immiscible blend
A/B
X-functionalized A*
X-functionalized C*
(miscible with A)
A  B

B-Y
+
Y-functionalized B*
Y-functionalized D*
(miscible with B)
/Faculty of Chemical Engineering & Chemistry
block or grafted
copolymers
“in situ”
4
Introduction
Reactive blending:
Reactive additive
for phase (A)
Reactive additive
for phase (B)
In situ generated copolymer
Y
X’
Y’
X
(A)-graft-(B)
X
Y
X’
Y’
(A)-branch-(B)
C. Koning, Prog. Pol. Sci (1998), 707
/Faculty of Chemical Engineering & Chemistry
5
Objective
Understand the reactive blending process from
a fundamental point of view
---- the competition between processes like
diffusion to interface and reaction between the
components inside the interface
/Faculty of Chemical Engineering & Chemistry
6
Oxazoline: Universal compatibilizer
R'CONOCR
R'CONHCH2CH2SOCR
CH2CH2Cl
RCOCl
RCOSH
R'
R'CONHCH2CH2OOCR
RCOOH O
N
RX
R'CONCH2CH2X
R
ROH
R'CONHCH2CH2OR
RNH 2
R'CONHCH 2CH 2NHR
B.M. Culberston, Prog. Pol. Sci (2002), 579
/Faculty of Chemical Engineering & Chemistry
7
Modification of SAN in solution
+
OH
H 2N
N
AE
SAN
+
N
O
Polymer-COOH
N
SAN-oxazoline
N
O
NH
CH2
CH2
O
O
Polymer
Reaction scheme
/Faculty of Chemical Engineering & Chemistry
8
Polymer modification
Materials: SAN, AE, catalyst, DCB (solvent)
Procedure:
Precipitation: 5 wt% of polymer in chloroform and
then add to it 10 times methanol
Drying: 48 hrs. at 45 °C
Parameters:
Ratio AN/AE, different catalysts, catalyst
concentration, temperature and reaction time.
/Faculty of Chemical Engineering & Chemistry
9
Characterization (Mid-IR)
1.4
0.70
SAN
SAN-oxa
1.2
0.65
Phenyl
SAN
1hr
2hrs
3hrs
4hrs
6hrs
8hrs
0.60
0.55
0.50
0.45
0.8
Nitrile
absorbance
absorbance
1.0
0.6
Oxazoline
0.4
0.40
0.35
0.30
0.25
0.20
0.15
0.2
0.10
0.0
0.05
0.00
-0.2
-0.05
2400
2200
2000
1800
1600
1400
-1
wavenumber (cm )
/Faculty of Chemical Engineering & Chemistry
1710
1700
1690
1680
1670
1660
1650
1640
1630
-1
wavenumber (cm )
10
1620
Kinetics of solution modification
oxa( 1:1, 2%)
0.012
oxa(mmol)
0.01
130 °C
0.008
140 °C
0.006
150 °C
0.004
160 °C
0.002
0
0
2
4
6
8
10
tim e(hrs)
K = 6.4*104exp(-10.2*103/T) ( g/mmol·min)
/Faculty of Chemical Engineering & Chemistry
11
oxa(1:1,4% cat)
oxa( 1:1, 2% cat)
0.012
0.012
0.01
130 °C
0.008
140 °C
0.006
150 °C
0.004
160 °C
0.002
oxa(mmol)
oxa(mmol)
0.01
130 deg
0.008
140 deg
0.006
150 deg
0.004
160 deg
0.002
0
0
2
4
6
8
0
10
0
2
tim e(hrs)
0.02
0.025
130 deg
0.015
140 deg
150 deg
0.01
160 deg
oxa(mmol)
oxa(mmol)
0.03
0
10
tim e (hrs )
/Faculty of Chemical Engineering & Chemistry
140 deg
150 deg
0.01
0
8
130 deg
0.015
0.005
6
10
0.02
0.005
4
8
oxa(1:4,4%cat)
0.025
2
6
tim e(hrs)
oxa(1:4,2% cat)
0
4
160 deg
0
5
10
tim e(hrs)
12
On-line monitoring of interfacial reaction
by ATR-FTIR
Materials:
SAN-oxazoline (1.9 ~5.4 wt% oxazoline)
poly (ethylene-co-methacrylic acid) (15 wt%
acid)
Sample:
a
b
a: thin film of SAN-oxazoline (100nm~ 400nm)
/Faculty of Chemical Engineering & Chemistry
b: thick film of PE-co-MA (~ 0.5mm)
13
Instrumental set-up
400nm
evanescent wave
d
IRE
IR
radiation
detector
d=1~2 µm
/Faculty of Chemical Engineering & Chemistry
14
Results
O
O
P
C
OH
+
P'
0.07
0.06
absorbance
0.05
0.04
0min
10min
20min
30min
60min
90min
117min
AmideNI
Oxazoline
n
Ester
O
O
P
C
190 oC
O
N
P'
C
n
Amide II
120 oC
0.03
5.4 wt% oxazoline
0.02
400nm SAN-oxa layer
0.01
0.00
1850
1800
1750
1700
1650
1600
1550
1500
1450
-1
Wavenumber (cm )
/Faculty of Chemical Engineering & Chemistry
15
Difference Spectroscopy
Amide I
Ester
0.035
0.030
0.025
0.020
Oxazoline
absorbance
0.015
0.010
0.005
0.000
-0.005
-0.010
-0.015
-0.020
1760
1740
1720
1700
1680
1660
1640
1620
-1
wavenumber (cm )
/Faculty of Chemical Engineering & Chemistry
16
Intensity Vs. Time
oxazoline
amide I
amideII
ester
0.55
0.50
0.45
0.40
intensity [a.u.]
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
20
40
60
80
100
120
140
160
time [min]
/Faculty of Chemical Engineering & Chemistry
17
Mirror image
original
origianl
oxazoline
amide I
amideII
ester
0.55
0.50
0.45
0.40
After reversal
0.6
oxazoline
amide I
amideII
ester
0.5
0.4
intensity/a.u.
intensity [a.u.]
0.35
0.30
0.25
0.20
0.15
0.3
0.2
0.10
0.05
0.1
0.00
-0.05
0.0
-0.10
-0.15
20
40
60
80
100
120
140
20
160
40
60
80
100
120
140
160
time/min
time [min]
oxazoline
amide I
amideII
ester
1.0
0.9
0.8
overlapping
intensity/a.u.
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
20
40
60
80
100
120
140
160
time/min
/Faculty of Chemical Engineering & Chemistry
18
Effect of temperatures
o
150 C
o
160 C
o
170 C
o
180 C
o
190 C
o
200 C
0.50
0.45
0.40
intensity [a.u.]
0.35
Equilibrium ?
0.30
0.25
0.20
0.15
Diffusion
limitation ?
0.10
0.05
0.00
-0.05
-20
0
20
40
60
80
100
120
time [min]
/Faculty of Chemical Engineering & Chemistry
19
Step annealing І:
0.5
o
o
190 C 2hrs to 170 C 0.5 hr
o
190 C 2hrs
intensity [a.u.]
0.4
0.3
Equilibrium ?
0.2
0.1
0.0
-20
0
20
40
60
80
100
120
140
160
time [min]
190 oC ~170 oC
/Faculty of Chemical Engineering & Chemistry
20
Step annealing II:
0.7
o
190 C
o
o
150 C 3hrs to 190 C 1hr
o
o
160 C 3hrs to 190 C 1hr
o
o
170 C 3hrs to 190 C 1hr
0.6
intensity [a.u.]
0.5
0.4
0.3
0.2
0.1
0.0
-20
0
20
40
60
80 100 120 140 160 180 200 220 240 260 280
time [min]
150 oC/160 oC/170 oC ~ 190 oC
/Faculty of Chemical Engineering & Chemistry
21
Step annealing II:
0.7
o
190 C
o
o
150 C 3hrs to 190 C 1hr
o
o
160 C 3hrs to 190 C 1hr
o
o
170 C 3hrs to 190 C 1hr
0.6
intensity [a.u.]
0.5
0.4
0.3
Slope
Slope in curve
of 190oC
0.2
150oC ~ 190oC
0.00707
0.00679
0.1
160oC ~ 190oC
0.00329
0.00405
170oC ~ 190oC
0.00148
0.00141
0.0
-20
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280
time [min]
150 oC/160 oC/170 oC ~ 190 oC
/Faculty of Chemical Engineering & Chemistry
22
Effect of content of oxazoline
3.45/1.9
0.5
1.9%
3.45%
5.4%
intensity [a.u.]
0.4
0.3
5.4/1.9
ratio of
oxazoline's
content
1.815789
2.842105
ratio of amide
I's intensity
1.974067
2.91471
0.2
0.022
0.020
0.1
slope
0.018
0.016
0.0
0.014
initial slope
Temp. =190
oC
0.012
0.010
0.008
0.006
0.004
0.002
-20
0
20
40
60
80
100
120
140
time [min]
/Faculty of Chemical Engineering & Chemistry
160
0.000
-0.002
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
content of oxazoline (%)
23
Effect of thickness of SAN-oxazoline layer
0.45
100nm
400nm
0.40
Intensity [a.u.]
0.35
0.30
0.25
0.20
0.15
0.10
Temp. =190 oC
0.05
0.00
0
20
40
60
80
100
120
time [min]
/Faculty of Chemical Engineering & Chemistry
24
Solution mixture of SAN and SAN-oxa
1.9%
5.4%
mixture, 1.9%
0.4
intensity [a.u.]
0.3
0.2
0.1
Temp. =190 oC
0.0
0
20
40
60
80
100
120
140
time [min]
/Faculty of Chemical Engineering & Chemistry
25
Conclusions
ATR-FTIR can be used to monitor the interfacial
reaction between oxazoline and acid groups and
follow the kinetics.
 There is no side reaction in the system.
 It’s not an equilibrium reaction.
 low temperature – higher diffusion limitation
and vice versa.
 The thickness of SAN-oxa layer and the
position of the oxazoline group in SAN is not
important for the reaction.
/Faculty of Chemical Engineering & Chemistry
26
Future Work
 ATR-FTIR: do quantitative analysis on the data
 Ellipsometry: follow the interlayer formation
 The ellipsometry data will be correlated with the
infrared data
 Off-line investigation of the stretching process
by FTIR
/Faculty of Chemical Engineering & Chemistry
27
Acknowledgement
 Otto van Asselen, TU/e
 Edgar Karssenberg, TU/e
 Martin van Duin, DSM Research, Geleen, The
Netherlands
Gert de Wit, GE Advanced Materials, Bergen op
Zoom, The Netherlands
 Colleagues in the faculty of Chemical
Engineering & Chemistry of TU/e
/Faculty of Chemical Engineering & Chemistry
28
Thanks for your attention !
/Faculty of Chemical Engineering & Chemistry
29
/Faculty of Chemical Engineering & Chemistry
30
Introduction
Morphology developement
viscosity of phases,interfacial properties, blend composition,
processing conditions
C. Koning, Prog. Pol. Sci (1998), 707
/Faculty of Chemical Engineering & Chemistry
31
Capillary Number ---- Drop deformation
.
c  R

Ca 



R
  Shear stress
  Interfacial tension
R  Drop size.
/Faculty of Chemical Engineering & Chemistry
32
Why oxazoline??
O
O
P
OH
+
P'
P
NH2
P'
O
O
O
+
OH
+
OH
O
O
P
N
P
OH
+
O
P'
O
P'
O
O
O
P
NH2
+
P'
P'
O
NH2
O
P(arom.) < P(aliph.)
O
+
P
O
P’(arom.) < P’(aliph.)
Macosko et al., Polymer 42 (2001), 8171
/Faculty of Chemical Engineering & Chemistry
33
Ellipsometry
 The evolution of interface with time under
different temperatures
/Faculty of Chemical Engineering & Chemistry
34
Model for Ellipsometry
/Faculty of Chemical Engineering & Chemistry
35
Off-line investigation of the stretching
process by FTIR
/Faculty of Chemical Engineering & Chemistry
36
FTIR Microscopy
/Faculty of Chemical Engineering & Chemistry
37
Conversion of oxazoline
conersion of oxa at 983cm-1 under 190deg
100.0000
90.0000
80.0000
70.0000
conversion/ %
Which one is better
boarder
baseline in diff
spec
curve fitting
60.0000
50.0000
narrow er
baseline in diff
spec
40.0000
30.0000
20.0000
10.0000
0.0000
0.0000
Conversion of oxa under 170deg
50.0000
100.0000
150.0000
200.0000
70.0000
time/min
60.0000
conversion/ %
50.0000
1660 boarder baseline
40.0000
983 boarder baseline
30.0000
1660->980
20.0000
curve fitting for 983cm-1
10.0000
0.0000
-10.0000
0
20
40
60
80
100
120
140
160
time/min
/Faculty of Chemical Engineering & Chemistry
38
5.4% SAN-oxa with catalyst
5.4% without catalyst 190deg 2hrs
/Faculty of Chemical Engineering & Chemistry
39
5.4% with 55wt% catalyst (to oxazoline) 190deg 2hrs
/Faculty of Chemical Engineering & Chemistry
40