Transcript Slide 1

Power Sector Planning and Development:
Lessons from Thailand’s and international
experience
Chuenchom Sangarasri Greacen
9 March 2013
WORKSHOP ON “ELECTRIC POWER DEVELOPMENT &
CHALLENGES IN MYANMAR: SHARING EXPERIENCES OF THE
MEKONG REGION”
Tonga Puri Hotel, Nay Pyi Taw, Myanmar
The engine of sustainable economic & social development
Environment
People
(peace,
democracy,
justice)
Improved
living standards &
economic opportunity:
-Wealth generation
-Access to electricity
-Education
-Health
Power sector planning in a nutshell
Mechanism:
• Assess needs,
• Source supply
• To meet objectives
(e.g. reliability, job creation)
• At reasonable price
Approaches to planning:
• Centralized (top-down)
• Decentralized (bottom-up)
Approaches to electrification
• Off-grid/mini-grid
• Grid extension
Centralized & decentralized generation
HV Transmission
HV substation
MV
distribution
Cogeneration
Distribution transformer
LV distribution
Biomass
Plant/
Large
solar
farm
Gasifier/
Solar farm/
Biogas Plant
Power sector planning in a nutshell
Mechanism:
• Assess needs,
• Source supply
• To meet objectives
(e.g. reliability, job creation)
• At reasonable price
Approaches to planning:
• Centralized (top-down)
• Decentralized (bottom-up)
Approaches to electrification
• Off-grid/mini-grid
• Grid extension
What is the best approach for a country?
• There may not be a “one-size-fit-all” solution
• Diverse context and situation require diverse approaches
Parallel approach:
extending the grid and encouraging rural mini-grids
Top-down
Customers
National
Grid
Large Plants
Bottom-up
Customers
Mini-Grid
Small Power
Producer
Thailand’s approach
• Rural electrification = grid expansion + mini-grid
– Community-scale power generation systems (e.g.
microhydro) were forced to abandon their generation
and mini-grids when grid electricity arrived
• Centralized, monopoly (single buyer) model with
strong emphasis on large-scale generation
• Deterministic forecast, top-down planning process
• Little participation in decision-making and sector
development
Planning of capacity additions
(Total capacity requirement = peak demand + 15% reserve margin)
Demand forecast
• Demand treated as given
• Deterministic model
– Main assumptions:
•
•
•
•
GDP growth
Energy elasticity (electricity growth/GDP growth)
Population growth
Econometric model with some end-use data (e.g. floor
space for offices or appliance ownership and efficiency
for residential sector) if available
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
The government used to assume a constant Energy
Elasticity of 1.4 but the assumption did not hold.
Energy demand is 1.4 times higher than GDP growth
T o ta l F in a l E n e rg y C o n su m p tio n & G D P
Energy Elasticity = ∆t Energy Consumption/ ∆t GDP
4.80
lo g (E n e r g y )
4.70
4.60
Ave. Energy
Elasticity
1.4 : 1.0
4.50
New
Target
1:1
or lower
4.40
4.30
4.20
4.10
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
l o g (G D P )
Thailand 1985
Energy Elasticity
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
2001
Energy-GDP
Elasticity
Avg.'85-2001
0.97 1.24 1.47 1.08 1.51 1.34 1.64 1.94 -3.50 0.47 0.58 0.97
1.07
1.40
Source : EIA,DOE, BP Statistic Review of World Energy, EGAT
Choice of supply options considered in the PDP by EGAT
700 MW Coal-fired power plant
700 MW gas-fired combined cycle plant
230 MW gas-fired open cycle plant
1,000 MW nuclear plant
Hydro imports are politically negotiated outside of PDP process
DSM/EE, RE, Distributed generation not integrated in the optimization process
Outcome of Thai top-down,
centralized, monopoly model
• EGAT (also MEA & PEA) became “Poster-child” of
World Bank, other foreign aid institutions
– Access to soft loans, technical assistance, etc.
– Rapid growth of sector and electrification rates
– Rapid economic growth and industrial development
Thailand’s Fuel Mix for Power Generation
Many successes but there are also
lessons learned…
• Over-projection of GDP and demand forecasts
leading to cycle of over-investments
• Abandonment and discrimination of communityscale, decentralized energy systems
• High dependency on imports
• Impacts and conflicts
• Inequality
• Inefficiency
• Uncompetitive and debt-ridden economy
Comparison of GDP: forecast vs. actual
• GDP is the main assumption affecting the power
demand forecast
• Assumptions of GDP growth used in PDP2007 vs
Actual.
PDP2007 forecast
5-yr
Case 2007 2008 2009 2010 2011Avg
Low
Base
High
Actu
al
4 4.5 4.7 4.5 4.5
4.8 5 5.2 5 5
5 5.5 5.7 5.5 5.5
4.4
5.0 2.5 -2.3 7.81.0*
2.8
5.0
5.4
5-yr
2012 2013 2014 2015 2016Avg
4.8 5 5 5.3 5.3
5.3 5.5 5.5 5.8 5.8
5.8 6 6 6.3 6.3
*Bank of Thailand's estimate, as reported in Matichon newspaper
on Feb 4, 2012
5.1
5.6
6.1
Past demand forecasts compared to actual peak
demand (MW)
Used in PDP2010
Actual demand
Over-projections of demand leads to…
• Over-expansion
• Cycles of over-investments and burden on
ratepayers
• No incentive to promote energy efficiency and
renewable energy
• Unnecessary social, environmental impacts
– Conflicts, violence and inequality
Pak Mun Dam Story
• A World Bank funded
project completed in 1994
• Run-of-river 126 MW
hydroelectric dam on a
main tributary of Mekong
River
• Source of on-going conflicts
due to impacts on fish
migration and livelihood of
people
Photo: http://en.wikipedia.org/wiki/Pak_Mun_dam
Siam Paragon
Electricity production
and consumption
(GWh)
123
1700 families
relocated
MBK
Loss of livelihood
for >6200 families
Loss of 116
fish species (44%)
Fishery yield
down 80%
Pak Mun Dam
81
Dams
Central World
Mae
75
Hong
Song
Shopping
Malls
65
Source: MEA, EGAT, Searin, Graphic: Green World Foundation
Impacts of Pak
Mun Dam alone
Changing energy intensity over 20-yr period
Data source: Energy Information Administration 2008
Office of the National Economic and Social Development Board
OFFIC E OF THE PRIME
Macroeconomic Analysis
MINISTER
Enabling factors:
MACROECONOMIC
MANAGEMENT
(Low margin/return)
High
Import Contents
& Sheer size of
export to GDP
High
Energy Intensity
& Low Efficiency
& Unsustainable
structure
Slow Technology
Development
Lack of Saving
No immunity/
High volatility
Financial System
Low
Value Creation
Thailand’s power sector:
sustainable economic development?
• Evident economic, material development…
• …but not sustainable
– Needs to rely on ever-increasing energy imports
– Vulnerability to supply disruptions due to high level of
centralization
• Unproductive, inefficient consumption only made
possible by borrowing from the past (plundering
resources) and the future (debt to be repaid)
– Government debt now >40% of GDP
– Household debt at 20-23% of income, to rise to 40%
Thailand’s economic,
power sector growth
≠
Sustainable or quality
economic, social
development
Energy obesity from
unhealthy consumption
habits that are financed
by debt
Is there a
better way?
Yes!
(Full report available
for download at
www.palangthai.org)
Not all energy demand/GDP $$$ are equal: some industries have
high energy, environmental costs but low value to economy
ดชนีความ
ั
ั ว่ นความ
ั ว่ น
สดส
สดส
ได้เปรียบ
เข้มข้นของ
มูลค่าเพิม
่
ทางการแข่งขน
ั
้
กลุม
่ อุตสาหกรรม High Energy, Low VA, Low RCA การใชพล
ังงาน ต่อผลผลิต
(RCA)
Iron
smelter industry
อุ
ตสาหกรรมเหล็
กและเหล็กกล้า
ี า น้ ามันชก
ั เงา
การผลิตสท
การผลิตผลิตภัณฑ์พลาสติก
High energy intensity
การผลิตผลิตภัณฑ์อโลหะอืน
่ ๆ
การฟอก การพิมพ์ การยอม
้
การผลิตเครือ
่ งยนต์และกังหัน
Low value added
การผลิตเครือ
่ งเรือนทีท
่ าดวยโลหะ
้
แบตเตอรีแ
่ ละหมอเก็
้ บประจุไฟฟ้ า
การผลิตเครือ
่ งจักรและอุปกรณ์ทางเกษตร
Low competitiveness
การผลิตอุปกรณ์รถไฟ
้
เครือ
่ งมือเครือ
่ งใชไฟฟ้
าอืน
่ ๆ
การผลิตผลิตภัณฑ์ทางเคมีอน
ื่ ๆ
การผลิตเครือ
่ งจักรและอุปกรณ์พ ิเศษ
การผลิตผลิตภัณฑ์จากกระดาษ
ิ าอุ
การผลิตสนค
้ ตสาหกรรมอืน
่ ๆ
ิ
การผลิตนาฬกา
การผลิตเครือ
่ งดนตรีและเครือ
่ งกีฬา
การบรรจุกระป๋ อง และการเก็บรักษาผัก ผลไม ้ น้ าผลไม ้
การผลิตผลิตภัณฑ์จากไมและไม
้
ก๊้ อก
การผลิตรองเทา้ ยกเวนรองเท
้
ายาง
้
การผลิตเครือ
่ งเรือนเครือ
่ งตกแต่งทีท
่ าดวยไม
้
้
การผลิตผลิตภัณฑ์อาหารอืน
่ ๆ
การผลิตอุปกรณ์การถ่ายภาพและสายตา
การทาเนือ
้ กระป๋ อง
ั ว์
การผลิตผลิตภัณฑ์หนังสต
การอบ การบ่มใบยาสูบ
อุตสาหกรรมเครือ
่ งดืม
่ ทีไ่ ม่มแ
ี อลกอฮอล์ และน้ าอัดลม
ื
อุตสาหกรรมเกีย
่ วกับผลิตภัณฑ์เชอก
โรงงานทาน้ าตาล และผลิตภัณฑ์อืน
่ ๆ
0.331
0.151
0.19
0.183
0.18
0.178
0.177
0.15
0.146
0.142
0.131
0.126
0.125
0.122
0.116
0.115
0.101
0.085
0.078
0.074
0.074
0.072
0.072
0.071
0.071
0.064
0.064
0.061
0.059
0.051
0.323
0.3
0.336
0.27
0.24
0.253
0.264
0.33
0.276
0.313
0.319
0.246
0.172
0.346
0.415
0.345
0.341
0.358
0.388
0.507
0.478
0.428
0.392
0.445
0.404
0.426
0.418
0.25
0.91
0.5
0
0.21
0.56
0.59
0.08
0.01
0.95
0.41
0.27
0.72
1.24
1.74
1.87
2.26
2.83
1.94
1.82
1.85
1.52
1.02
2.57
1.22
1.08
1.11
BOI investment
privileges should
take into
account energy,
economic value
considerations
Demand for electricity is not a given.
We can choose wisely what kind of industries or
economic activities are worth supporting (e.g. given
investment privileges) based on their energy,
environmental costs and value to economy (local
job creation, local content, value creation)
Government Policy Framework
according to Energy Industry Act 2007
4 dimensions of
energy security
Energy Industry Act 2007
Indicators
Availability
- Resource Adequacy
- Min. dependency on imports
- Diversification
- Reserve margin ≥15%
- % energy imports
-Shares of fuels
Affordability
- Affordable cost of service
- Min. exposure to price volatility
- Electricity cost (B/mo.)
- % exposure to oil price
Efficiency
- Energy & economic efficiency
- Energy intensity
(GWh/GDP)
Environment
- Min. environmental impacts
- GHG emissions
- SO2 emissions
Need to make “energy security”
and PDP accountable to
government policy framework
Framework for
evaluating PDPs
Prioritize energy efficiency (least-cost supply options)
T-5
Insulate roofs to
keep cool in
Prioritize decentralized generation over centralized options:
Cogeneration (Combined Heat and Power – CHP)
Comparing PDPs
PDP2012
0,000
PDP2010v2
PDP 2010
70,000
nuclear
0,000
60,000
0,000
50,000
EE/DS
M
Others
Oil/gas
RE
DEDE
Cogen
0,000
40,000
Hydro
imports
Hydro
0,000
30,000
Gas
Coal
0,000
20,000
0,000
10,000
0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030
0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 20302010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030
Dependency on electricity/fuel imports
GWH
250,000
200,000
Uranium
(Kazakhstan/Australia)
Power imports
(Laos/Burma/Malay)
Diesel
150,000
100,000
Fuel Oil
Gas imports
(Burma/Middle East)
Coal imports
(Indonesia/Australia)
50,000
0
2010
PDP2010
PDP2010v2
PDP2012
Cost of service (Baht/month)
change in 2030 compared to 2010
6%
Cost of service (Baht/month)
4%
500
3.5%
1.3%
2%
450
0%
400
-2%
350
-4%
PDP2010 PDP2010v2 PDP2012
-6%
300
-8%
250
-10%
200
-12%
150
-14%
-16%
100
50
0
2010
PDP2010
PDP2010v2
PDP2012
-13.2%
Emissions of air pollutants
change in 2030 compared to 2010
450%
400%
350%
300%
250%
PDP2010
PDP2010v2
200%
PDP2012
150%
100%
50%
0%
-50%
GHG
Nox
SO2
TSP
Hg
Comparing PDPs against different
elements of energy security
change in 2030 compared to 2010
(Negative value = improved elements of energy security)
PDP2010v2
PDP2010
42%
52%
56%
-17%
-13%
-21%
-97%
PDP2012
18%
4%
-15%
1%
-17%
-19%
-97%
Best practices from international experience
• Case study of Pacific Northwest, USA (incl. Washington
State) & Integrated Resource Planning (IRP) process
Objectives Defined
ITERATION
Demand forecast scenarios
(by end use)
Meeting electricity requirement:
options
T&D
IMPROVEMENTS
END-USE EFFICIENCY
IMPROVEMENTS
GENERATION
PLANTS
UNIT COSTS OF
ALTERNATIVES
($ / kWh)
GWh
IRP Flowchart
Data collection, systems analysis
YEAR
A
B
C
$/kWh
LEAST COST MIX
GWh
Strategies
Periodic
Monitoring
Implementation
Source: D’Sa, A. (2005). "Integrated resource planning (IRP)
and power sector reform in developing countries." Energy
Policy 33(10): 1271-1285.
Resource Costs: fair,
comprehensive cost comparison
Levelized Life-cycle Cost ($2006/MWhr)
200
180
160
Emissions
Transmission & Losses
140
Integration
Plant Cost
120
100
80
60
40
20
0
Conservation
New Hydro
Ultrasupercritical
Coal (ID)
Woody Residue
slide 40
Source Northwest Power and
NV CSP > S. ID
Northwest
Power and
Conservation
CouncilCouncil,
Conservation
6th Plan.
6th Plan Resource Portfolio*
Cumulative Resource
(Average Megawatts)
8000
SCCT
7000
CCCT
6000
5000
Geothermal
4000
New Wind
3000
RPS Wind
2000
1000
0
2010
Energy
Efficiency
2015
2020
2025
*Expected Value Build Out. Actual build out schedule depends on future conditions
slide 41
Source Northwest Power and
Northwest
Power and
Conservation
Conservation
Council,
Council
6th Plan.
Economic Multiplier Effect
The economic multiplier, also known as the multiplier effect, is
a measure of how much economic activity can be generated in
a community by different combinations of purchasing and
investment.
Xayaburi dam vs. RE or EE investment
Source: US Department of Energy, The Jobs Connection: Energy Use and Local Economic Development,
http://www.localenergy.org/pdfs/Document%20Library/The%20Jobs%20Connection.pdf Accessed
March 8, 2013.
Lessons for Myanmar
The engine of sustainable economic & social development
Environment
People
(peace,
democracy,
justice)
Improved
living standards &
economic opportunity:
-Wealth generation
-Access to electricity
-Education
-Health
Parallel approach:
extending the grid and encouraging rural mini-grids
Top-down
Customers
National
Grid
Large Plants
Bottom-up
Customers
Mini-Grid
Small Power
Producer
Special considerations for Myanmar
• “The last frontier”
• How to leverage external
resources while maximizing
benefits to the locals and
without losing sovereign
power
• How to generate income
while having sufficient
resources to sustainably
meet growing domestic
needs
Strategy for Myanmar’s power sector
planning, policy and development
• Integrated economic and energy policy and planning
– Minimize waste, maximize efficiency
– Choose economic activities wisely: low energy & resource
intensity, high economic value, high competitiveness
– Maximize economic value for each energy investment:
“getting the most bang (jobs, investments, purchasing)
for the $$$ invested”
• Prioritize utilization of distributed renewable over
non-renewable resources
• Empower participation by citizens, entrepreneurs
and communities in power sector planning and
development
Thank you
Questions and discussion
Email: chom at palangthai dot org
www.palangthai.org
Parallel approach:
extending the grid and encouraging rural mini-grids
Customers
National
Grid
Large Plants
Customers
Mini-Grid
Small Power
Producer
Power export $
Electrification Fund
Regulatory framework allows for fair treatment of both
Donor funds $
Centralized energy is also more costly
Decentralized generation brings down costs
Thailand
8 .0 0
Ireland – retail costs for new capacity
7 .0 0
6 .0 0
Euro Ce nts / KW h
PDP 2007 requires 2
trillion baht to
implement,
comprising:
million B
• generation 1,482,000
• transmission
595,000
5 .0 0
4 .0 0
3 .0 0
2 .0 0
1 .0 0
0 .0 0
Transmission adds
40% to generation
costs
1 0 0 % C e n t ra l / 0 % D E
75% / 25%
50% / 50%
25% / 75%
0 % C e n t ra l / 1 0 0 % D
% DE of Tota l Ge ne ra tion
O & M of New C apac ity
F uel
C apital Am oriz ation + P rofit O n New C apac ity
T & D Am oriz ation on New T & D
Source: World Alliance for Decentralized Energy, April 2005
Incentive structure for utilities:
the high their investment budget, the more profits
• Financial criteria for utilities link
profits to investments
– Thailand uses outdated returnbased regulation
– WB’s promoted financial criteria
such as self financing ratio (SFR)
also have similar effects
• ROIC (Return on Invested
Capital means: the more you
invest, the more profits
ROIC = Net profit after tax
Invested capital
EGAT 6.4%
MEA
PEA
5.8%
Result :
EGAT favors capital-intensive investments (centralized plants) by its
organization or subsidiary companies.
Allowing more EE or RE generation hurts EGAT’s bottom line
Thailand’s Fuel Mix for Power Generation
Imported
4%
Renewable
2%
Diesel
0.03%
Hydro
3%
Fuel Oil
0.34%
Coal
18%
Natural Gas
73%
Total Installed Capacity: 31,517 MW (2010)
53
Source: Puget Sound Energy
Pacific NW: meeting growing demand through
mainly investments in RE and EE
5000
Cumulative Capacity (MW)*
4500
Coal-fired (ICG) (MW)
4000
CCGTurbine (MW)
3500
SCGTurbine (MW)
3000
2500
Wind (MW)
Energy Efficiency (aMW)
2000
1500
1000
500
0
2004
2007
2010
Source: Northwest Power and Conservation Council
2013
2016
2019
2022
Source: Charles, Gillian and Tom Eckman. 2010. Regional Conservation Progress
Report – Results from 2010. Regional Technical Forum.
http://www.nwcouncil.org/energy/rtf/consreport/2010/Default.asp
Cost of new conservation
less than $0.02/kWh
Source: Charles, Gillian and Tom Eckman. 2010. Regional Conservation Progress Report – Results from 2010.
Regional Technical Forum. http://www.nwcouncil.org/energy/rtf/consreport/2010/Default.asp
T-5
Insulate roofs to
keep cool in
Source: The 5th NW Electric Power and ConservationPlan
Supply options in NW USA
Source: The 5th NW Electric Power and ConservationPlan
Supply options in NW USA
Energy waste in a typical pumping system
Important conceptual framework
• Rural electrification ≠ grid expansion
• Rural electrification = off-/mini-grid + grid expansion
• Planning for domestic electricity demand
(electrification) = Power Development Plan (PDP)
process
• Planning for hydropower export should be treated
separately, with consideration of other ways of
generating income (e.g. tourism, agriculture, industrial
development) as alternatives
Power sector development strategy
• Energy security
– Ability to meet demand through sustainable and
efficient utilization of resources at reasonable cost
•
•
•
•
Alternative energy development
Energy prices and safety
Conservation and efficiency
Environmental protection
Thailand’s experience
• Emphasis of top-down centralized model
• Treating demand as given
• Emphasis on expansion and unsustainable
centralized technology options
• Lack of meaningful participation
Strategy
• Efficient, sustainable utilization of resources
– Self-reliance
• Self-reliance
–
–
–
–
–
–
Efficiency (production and consumption)
Sustainable utilization of natural resources
Value to economy
Leveraging external resources
Role of private sector
Myanmar being “the last frontier”
Energy demand is 1.4 times higher than GDP growth
T o ta l F in a l E n e rg y C o n su m p tio n & G D P
Energy Elasticity = ∆t Energy Consumption/ ∆t GDP
4.80
Ave. Energy Elasticity
1.4 : 1.0
lo g (E n e r g y )
4.70
4.60
4.50
New Target
1:1
or lower
4.40
4.30
4.20
4.10
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
l o g (G D P )
Thailand
Energy Elasticity
1985 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
2001
Energy-GDP
Elasticity
Avg.'85-2001
0.97 1.24 1.47 1.08 1.51 1.34 1.64 1.94 -3.50 0.47 0.58 0.97
1.07
1.40
Source : EIA,DOE, BP Statistic Review of World Energy, EGAT
Electricity Elasticity (Yearly)
3.00
2.77
2.54
2.14
2.00
1.80
1.61
1.69
1.85
1.81
1.36
1.00
0.89
1.35
1.48
1.77
1.42 1.45 1.47 1.44 1.49
1.46
0.97
0.94
1.34
1.24 1.15
1.07
0.25 0.30
0.81 0.73
0.11
2012(Q1-Q3)
0.00
-1.00
-2.00
-3.00
-4.00
-5.00
-3.86
-4.62
Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt
Power Generation Elasticity (1992-2001)
11.60
11.50
11.40
11.30
LN(PG) = 1.6985 LN(GDP) -13.8995
R
LN(PG)
11.20
11.10
11.00
10.90
10.80
Power Generation Elasticity AVG. = 1.6985
10.70
10.60
14.40
14.50
14.60
14.70
14.80
LN(GDP)
Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt
14.90
15.00
Power Generation Elasticity (2002-2011)
12.10
12.00
LN(PG) = 1.0661 LN(GDP) -4.3664
R
5
11.90
LN(PG)
11.80
11.70
11.60
Power Generation Elasticity AVG. = 1.0661
11.50
11.40
14.85
14.90
14.95
15.00
15.05
15.10
15.15
15.20
15.25
LN(GDP)
Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt
15.30
15.35
15.40
Electricity Consumption Intensity
40.0
35.0
29.0
30.0
28.1
29.1
30.2
31.5 31.3 31.0 31.7
30.9 30.8 31.2 31.4
26.6
GWh /Billion Baht
25.0
20.9
20.0
15.0
14.4 14.3 14.7
15.6
16.3 16.8
18.1 18.0
17.5
18.7
21.6
22.3
23.2
24.1
24.7
19.6
10.0
5.0
0.0
Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt
32.5 32.4
33.6
ในความเป็ นจริ ง มีความไม่แน่นอนจากเหตุการณ์ “ที่ไม่
คาดหมาย”
• การพยากรณ์ไฟฟ้าหรื อเศรษฐกิจมักจะไม่ได้ นาเหตุการณ์ “ที่ไม่คาดหมาย” มาพิจารณาเพราะ
ยากแก่การคาดหมาย
– ตัวอย่างเช่น วิกฤตการเงินในปี 2540 การพุ่งสูงของราคาน ้ามันโลก ความรุนแรงทางการเมือง และอุทกภัย
ร้ ายแรงในรอบ 50 ปี
• ในอนาคต ความไม่แน่นอนจากภาวะเศรษฐกิจโลก สถานการณ์ด้านการเมืองในประเทศ และ
สภาพภูมิอากาศที่แปรปรวน คาดว่าจะยังมีอยู่ต่อไป
Actual GDP growth (%)
10.0
5.0
0.0
1990
-5.0
-10.0
-15.0
1995
2000
2005
2010
Comparison of trend lines with
historical peak consumption
MW
Exponential
MW
30,000
Linear
30,000
0.0731x
y = 4E-60e
2
R = 0.9433
y = 831.43x - 2E+06
R2 = 0.9894
10,000
10,000
0
0
Historic peak demand
เอ็ ก ซ์โพเนนเชียล (Historic peak demand)
19
85
19
87
19
89
19
91
19
93
19
95
19
97
19
99
20
01
20
03
20
05
20
07
20
09
20,000
19
85
19
87
19
89
19
91
19
93
19
95
19
97
19
99
20
01
20
03
20
05
20
07
20
09
20,000
Historic peak demand
เชิงเส ้น (Historic peak demand)
Past demand trajectory was linear but how come
the official demand projections have always
assumed exponential trend and over-estimated?
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary.
Needed: bottom up forecasts
• Thailand should invest in load forecasts that
use a bottom-up approach
• using industry-specific and sector-specific data
on:
– electricity demand trends
– technology transitions trends