Transcript Slide 1
Power Sector Planning and Development: Lessons from Thailand’s and international experience Chuenchom Sangarasri Greacen 9 March 2013 WORKSHOP ON “ELECTRIC POWER DEVELOPMENT & CHALLENGES IN MYANMAR: SHARING EXPERIENCES OF THE MEKONG REGION” Tonga Puri Hotel, Nay Pyi Taw, Myanmar The engine of sustainable economic & social development Environment People (peace, democracy, justice) Improved living standards & economic opportunity: -Wealth generation -Access to electricity -Education -Health Power sector planning in a nutshell Mechanism: • Assess needs, • Source supply • To meet objectives (e.g. reliability, job creation) • At reasonable price Approaches to planning: • Centralized (top-down) • Decentralized (bottom-up) Approaches to electrification • Off-grid/mini-grid • Grid extension Centralized & decentralized generation HV Transmission HV substation MV distribution Cogeneration Distribution transformer LV distribution Biomass Plant/ Large solar farm Gasifier/ Solar farm/ Biogas Plant Power sector planning in a nutshell Mechanism: • Assess needs, • Source supply • To meet objectives (e.g. reliability, job creation) • At reasonable price Approaches to planning: • Centralized (top-down) • Decentralized (bottom-up) Approaches to electrification • Off-grid/mini-grid • Grid extension What is the best approach for a country? • There may not be a “one-size-fit-all” solution • Diverse context and situation require diverse approaches Parallel approach: extending the grid and encouraging rural mini-grids Top-down Customers National Grid Large Plants Bottom-up Customers Mini-Grid Small Power Producer Thailand’s approach • Rural electrification = grid expansion + mini-grid – Community-scale power generation systems (e.g. microhydro) were forced to abandon their generation and mini-grids when grid electricity arrived • Centralized, monopoly (single buyer) model with strong emphasis on large-scale generation • Deterministic forecast, top-down planning process • Little participation in decision-making and sector development Planning of capacity additions (Total capacity requirement = peak demand + 15% reserve margin) Demand forecast • Demand treated as given • Deterministic model – Main assumptions: • • • • GDP growth Energy elasticity (electricity growth/GDP growth) Population growth Econometric model with some end-use data (e.g. floor space for offices or appliance ownership and efficiency for residential sector) if available Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. The government used to assume a constant Energy Elasticity of 1.4 but the assumption did not hold. Energy demand is 1.4 times higher than GDP growth T o ta l F in a l E n e rg y C o n su m p tio n & G D P Energy Elasticity = ∆t Energy Consumption/ ∆t GDP 4.80 lo g (E n e r g y ) 4.70 4.60 Ave. Energy Elasticity 1.4 : 1.0 4.50 New Target 1:1 or lower 4.40 4.30 4.20 4.10 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 l o g (G D P ) Thailand 1985 Energy Elasticity 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Energy-GDP Elasticity Avg.'85-2001 0.97 1.24 1.47 1.08 1.51 1.34 1.64 1.94 -3.50 0.47 0.58 0.97 1.07 1.40 Source : EIA,DOE, BP Statistic Review of World Energy, EGAT Choice of supply options considered in the PDP by EGAT 700 MW Coal-fired power plant 700 MW gas-fired combined cycle plant 230 MW gas-fired open cycle plant 1,000 MW nuclear plant Hydro imports are politically negotiated outside of PDP process DSM/EE, RE, Distributed generation not integrated in the optimization process Outcome of Thai top-down, centralized, monopoly model • EGAT (also MEA & PEA) became “Poster-child” of World Bank, other foreign aid institutions – Access to soft loans, technical assistance, etc. – Rapid growth of sector and electrification rates – Rapid economic growth and industrial development Thailand’s Fuel Mix for Power Generation Many successes but there are also lessons learned… • Over-projection of GDP and demand forecasts leading to cycle of over-investments • Abandonment and discrimination of communityscale, decentralized energy systems • High dependency on imports • Impacts and conflicts • Inequality • Inefficiency • Uncompetitive and debt-ridden economy Comparison of GDP: forecast vs. actual • GDP is the main assumption affecting the power demand forecast • Assumptions of GDP growth used in PDP2007 vs Actual. PDP2007 forecast 5-yr Case 2007 2008 2009 2010 2011Avg Low Base High Actu al 4 4.5 4.7 4.5 4.5 4.8 5 5.2 5 5 5 5.5 5.7 5.5 5.5 4.4 5.0 2.5 -2.3 7.81.0* 2.8 5.0 5.4 5-yr 2012 2013 2014 2015 2016Avg 4.8 5 5 5.3 5.3 5.3 5.5 5.5 5.8 5.8 5.8 6 6 6.3 6.3 *Bank of Thailand's estimate, as reported in Matichon newspaper on Feb 4, 2012 5.1 5.6 6.1 Past demand forecasts compared to actual peak demand (MW) Used in PDP2010 Actual demand Over-projections of demand leads to… • Over-expansion • Cycles of over-investments and burden on ratepayers • No incentive to promote energy efficiency and renewable energy • Unnecessary social, environmental impacts – Conflicts, violence and inequality Pak Mun Dam Story • A World Bank funded project completed in 1994 • Run-of-river 126 MW hydroelectric dam on a main tributary of Mekong River • Source of on-going conflicts due to impacts on fish migration and livelihood of people Photo: http://en.wikipedia.org/wiki/Pak_Mun_dam Siam Paragon Electricity production and consumption (GWh) 123 1700 families relocated MBK Loss of livelihood for >6200 families Loss of 116 fish species (44%) Fishery yield down 80% Pak Mun Dam 81 Dams Central World Mae 75 Hong Song Shopping Malls 65 Source: MEA, EGAT, Searin, Graphic: Green World Foundation Impacts of Pak Mun Dam alone Changing energy intensity over 20-yr period Data source: Energy Information Administration 2008 Office of the National Economic and Social Development Board OFFIC E OF THE PRIME Macroeconomic Analysis MINISTER Enabling factors: MACROECONOMIC MANAGEMENT (Low margin/return) High Import Contents & Sheer size of export to GDP High Energy Intensity & Low Efficiency & Unsustainable structure Slow Technology Development Lack of Saving No immunity/ High volatility Financial System Low Value Creation Thailand’s power sector: sustainable economic development? • Evident economic, material development… • …but not sustainable – Needs to rely on ever-increasing energy imports – Vulnerability to supply disruptions due to high level of centralization • Unproductive, inefficient consumption only made possible by borrowing from the past (plundering resources) and the future (debt to be repaid) – Government debt now >40% of GDP – Household debt at 20-23% of income, to rise to 40% Thailand’s economic, power sector growth ≠ Sustainable or quality economic, social development Energy obesity from unhealthy consumption habits that are financed by debt Is there a better way? Yes! (Full report available for download at www.palangthai.org) Not all energy demand/GDP $$$ are equal: some industries have high energy, environmental costs but low value to economy ดชนีความ ั ั ว่ นความ ั ว่ น สดส สดส ได้เปรียบ เข้มข้นของ มูลค่าเพิม ่ ทางการแข่งขน ั ้ กลุม ่ อุตสาหกรรม High Energy, Low VA, Low RCA การใชพล ังงาน ต่อผลผลิต (RCA) Iron smelter industry อุ ตสาหกรรมเหล็ กและเหล็กกล้า ี า น้ ามันชก ั เงา การผลิตสท การผลิตผลิตภัณฑ์พลาสติก High energy intensity การผลิตผลิตภัณฑ์อโลหะอืน ่ ๆ การฟอก การพิมพ์ การยอม ้ การผลิตเครือ ่ งยนต์และกังหัน Low value added การผลิตเครือ ่ งเรือนทีท ่ าดวยโลหะ ้ แบตเตอรีแ ่ ละหมอเก็ ้ บประจุไฟฟ้ า การผลิตเครือ ่ งจักรและอุปกรณ์ทางเกษตร Low competitiveness การผลิตอุปกรณ์รถไฟ ้ เครือ ่ งมือเครือ ่ งใชไฟฟ้ าอืน ่ ๆ การผลิตผลิตภัณฑ์ทางเคมีอน ื่ ๆ การผลิตเครือ ่ งจักรและอุปกรณ์พ ิเศษ การผลิตผลิตภัณฑ์จากกระดาษ ิ าอุ การผลิตสนค ้ ตสาหกรรมอืน ่ ๆ ิ การผลิตนาฬกา การผลิตเครือ ่ งดนตรีและเครือ ่ งกีฬา การบรรจุกระป๋ อง และการเก็บรักษาผัก ผลไม ้ น้ าผลไม ้ การผลิตผลิตภัณฑ์จากไมและไม ้ ก๊้ อก การผลิตรองเทา้ ยกเวนรองเท ้ ายาง ้ การผลิตเครือ ่ งเรือนเครือ ่ งตกแต่งทีท ่ าดวยไม ้ ้ การผลิตผลิตภัณฑ์อาหารอืน ่ ๆ การผลิตอุปกรณ์การถ่ายภาพและสายตา การทาเนือ ้ กระป๋ อง ั ว์ การผลิตผลิตภัณฑ์หนังสต การอบ การบ่มใบยาสูบ อุตสาหกรรมเครือ ่ งดืม ่ ทีไ่ ม่มแ ี อลกอฮอล์ และน้ าอัดลม ื อุตสาหกรรมเกีย ่ วกับผลิตภัณฑ์เชอก โรงงานทาน้ าตาล และผลิตภัณฑ์อืน ่ ๆ 0.331 0.151 0.19 0.183 0.18 0.178 0.177 0.15 0.146 0.142 0.131 0.126 0.125 0.122 0.116 0.115 0.101 0.085 0.078 0.074 0.074 0.072 0.072 0.071 0.071 0.064 0.064 0.061 0.059 0.051 0.323 0.3 0.336 0.27 0.24 0.253 0.264 0.33 0.276 0.313 0.319 0.246 0.172 0.346 0.415 0.345 0.341 0.358 0.388 0.507 0.478 0.428 0.392 0.445 0.404 0.426 0.418 0.25 0.91 0.5 0 0.21 0.56 0.59 0.08 0.01 0.95 0.41 0.27 0.72 1.24 1.74 1.87 2.26 2.83 1.94 1.82 1.85 1.52 1.02 2.57 1.22 1.08 1.11 BOI investment privileges should take into account energy, economic value considerations Demand for electricity is not a given. We can choose wisely what kind of industries or economic activities are worth supporting (e.g. given investment privileges) based on their energy, environmental costs and value to economy (local job creation, local content, value creation) Government Policy Framework according to Energy Industry Act 2007 4 dimensions of energy security Energy Industry Act 2007 Indicators Availability - Resource Adequacy - Min. dependency on imports - Diversification - Reserve margin ≥15% - % energy imports -Shares of fuels Affordability - Affordable cost of service - Min. exposure to price volatility - Electricity cost (B/mo.) - % exposure to oil price Efficiency - Energy & economic efficiency - Energy intensity (GWh/GDP) Environment - Min. environmental impacts - GHG emissions - SO2 emissions Need to make “energy security” and PDP accountable to government policy framework Framework for evaluating PDPs Prioritize energy efficiency (least-cost supply options) T-5 Insulate roofs to keep cool in Prioritize decentralized generation over centralized options: Cogeneration (Combined Heat and Power – CHP) Comparing PDPs PDP2012 0,000 PDP2010v2 PDP 2010 70,000 nuclear 0,000 60,000 0,000 50,000 EE/DS M Others Oil/gas RE DEDE Cogen 0,000 40,000 Hydro imports Hydro 0,000 30,000 Gas Coal 0,000 20,000 0,000 10,000 0 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 0 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 20302010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 Dependency on electricity/fuel imports GWH 250,000 200,000 Uranium (Kazakhstan/Australia) Power imports (Laos/Burma/Malay) Diesel 150,000 100,000 Fuel Oil Gas imports (Burma/Middle East) Coal imports (Indonesia/Australia) 50,000 0 2010 PDP2010 PDP2010v2 PDP2012 Cost of service (Baht/month) change in 2030 compared to 2010 6% Cost of service (Baht/month) 4% 500 3.5% 1.3% 2% 450 0% 400 -2% 350 -4% PDP2010 PDP2010v2 PDP2012 -6% 300 -8% 250 -10% 200 -12% 150 -14% -16% 100 50 0 2010 PDP2010 PDP2010v2 PDP2012 -13.2% Emissions of air pollutants change in 2030 compared to 2010 450% 400% 350% 300% 250% PDP2010 PDP2010v2 200% PDP2012 150% 100% 50% 0% -50% GHG Nox SO2 TSP Hg Comparing PDPs against different elements of energy security change in 2030 compared to 2010 (Negative value = improved elements of energy security) PDP2010v2 PDP2010 42% 52% 56% -17% -13% -21% -97% PDP2012 18% 4% -15% 1% -17% -19% -97% Best practices from international experience • Case study of Pacific Northwest, USA (incl. Washington State) & Integrated Resource Planning (IRP) process Objectives Defined ITERATION Demand forecast scenarios (by end use) Meeting electricity requirement: options T&D IMPROVEMENTS END-USE EFFICIENCY IMPROVEMENTS GENERATION PLANTS UNIT COSTS OF ALTERNATIVES ($ / kWh) GWh IRP Flowchart Data collection, systems analysis YEAR A B C $/kWh LEAST COST MIX GWh Strategies Periodic Monitoring Implementation Source: D’Sa, A. (2005). "Integrated resource planning (IRP) and power sector reform in developing countries." Energy Policy 33(10): 1271-1285. Resource Costs: fair, comprehensive cost comparison Levelized Life-cycle Cost ($2006/MWhr) 200 180 160 Emissions Transmission & Losses 140 Integration Plant Cost 120 100 80 60 40 20 0 Conservation New Hydro Ultrasupercritical Coal (ID) Woody Residue slide 40 Source Northwest Power and NV CSP > S. ID Northwest Power and Conservation CouncilCouncil, Conservation 6th Plan. 6th Plan Resource Portfolio* Cumulative Resource (Average Megawatts) 8000 SCCT 7000 CCCT 6000 5000 Geothermal 4000 New Wind 3000 RPS Wind 2000 1000 0 2010 Energy Efficiency 2015 2020 2025 *Expected Value Build Out. Actual build out schedule depends on future conditions slide 41 Source Northwest Power and Northwest Power and Conservation Conservation Council, Council 6th Plan. Economic Multiplier Effect The economic multiplier, also known as the multiplier effect, is a measure of how much economic activity can be generated in a community by different combinations of purchasing and investment. Xayaburi dam vs. RE or EE investment Source: US Department of Energy, The Jobs Connection: Energy Use and Local Economic Development, http://www.localenergy.org/pdfs/Document%20Library/The%20Jobs%20Connection.pdf Accessed March 8, 2013. Lessons for Myanmar The engine of sustainable economic & social development Environment People (peace, democracy, justice) Improved living standards & economic opportunity: -Wealth generation -Access to electricity -Education -Health Parallel approach: extending the grid and encouraging rural mini-grids Top-down Customers National Grid Large Plants Bottom-up Customers Mini-Grid Small Power Producer Special considerations for Myanmar • “The last frontier” • How to leverage external resources while maximizing benefits to the locals and without losing sovereign power • How to generate income while having sufficient resources to sustainably meet growing domestic needs Strategy for Myanmar’s power sector planning, policy and development • Integrated economic and energy policy and planning – Minimize waste, maximize efficiency – Choose economic activities wisely: low energy & resource intensity, high economic value, high competitiveness – Maximize economic value for each energy investment: “getting the most bang (jobs, investments, purchasing) for the $$$ invested” • Prioritize utilization of distributed renewable over non-renewable resources • Empower participation by citizens, entrepreneurs and communities in power sector planning and development Thank you Questions and discussion Email: chom at palangthai dot org www.palangthai.org Parallel approach: extending the grid and encouraging rural mini-grids Customers National Grid Large Plants Customers Mini-Grid Small Power Producer Power export $ Electrification Fund Regulatory framework allows for fair treatment of both Donor funds $ Centralized energy is also more costly Decentralized generation brings down costs Thailand 8 .0 0 Ireland – retail costs for new capacity 7 .0 0 6 .0 0 Euro Ce nts / KW h PDP 2007 requires 2 trillion baht to implement, comprising: million B • generation 1,482,000 • transmission 595,000 5 .0 0 4 .0 0 3 .0 0 2 .0 0 1 .0 0 0 .0 0 Transmission adds 40% to generation costs 1 0 0 % C e n t ra l / 0 % D E 75% / 25% 50% / 50% 25% / 75% 0 % C e n t ra l / 1 0 0 % D % DE of Tota l Ge ne ra tion O & M of New C apac ity F uel C apital Am oriz ation + P rofit O n New C apac ity T & D Am oriz ation on New T & D Source: World Alliance for Decentralized Energy, April 2005 Incentive structure for utilities: the high their investment budget, the more profits • Financial criteria for utilities link profits to investments – Thailand uses outdated returnbased regulation – WB’s promoted financial criteria such as self financing ratio (SFR) also have similar effects • ROIC (Return on Invested Capital means: the more you invest, the more profits ROIC = Net profit after tax Invested capital EGAT 6.4% MEA PEA 5.8% Result : EGAT favors capital-intensive investments (centralized plants) by its organization or subsidiary companies. Allowing more EE or RE generation hurts EGAT’s bottom line Thailand’s Fuel Mix for Power Generation Imported 4% Renewable 2% Diesel 0.03% Hydro 3% Fuel Oil 0.34% Coal 18% Natural Gas 73% Total Installed Capacity: 31,517 MW (2010) 53 Source: Puget Sound Energy Pacific NW: meeting growing demand through mainly investments in RE and EE 5000 Cumulative Capacity (MW)* 4500 Coal-fired (ICG) (MW) 4000 CCGTurbine (MW) 3500 SCGTurbine (MW) 3000 2500 Wind (MW) Energy Efficiency (aMW) 2000 1500 1000 500 0 2004 2007 2010 Source: Northwest Power and Conservation Council 2013 2016 2019 2022 Source: Charles, Gillian and Tom Eckman. 2010. Regional Conservation Progress Report – Results from 2010. Regional Technical Forum. http://www.nwcouncil.org/energy/rtf/consreport/2010/Default.asp Cost of new conservation less than $0.02/kWh Source: Charles, Gillian and Tom Eckman. 2010. Regional Conservation Progress Report – Results from 2010. Regional Technical Forum. http://www.nwcouncil.org/energy/rtf/consreport/2010/Default.asp T-5 Insulate roofs to keep cool in Source: The 5th NW Electric Power and ConservationPlan Supply options in NW USA Source: The 5th NW Electric Power and ConservationPlan Supply options in NW USA Energy waste in a typical pumping system Important conceptual framework • Rural electrification ≠ grid expansion • Rural electrification = off-/mini-grid + grid expansion • Planning for domestic electricity demand (electrification) = Power Development Plan (PDP) process • Planning for hydropower export should be treated separately, with consideration of other ways of generating income (e.g. tourism, agriculture, industrial development) as alternatives Power sector development strategy • Energy security – Ability to meet demand through sustainable and efficient utilization of resources at reasonable cost • • • • Alternative energy development Energy prices and safety Conservation and efficiency Environmental protection Thailand’s experience • Emphasis of top-down centralized model • Treating demand as given • Emphasis on expansion and unsustainable centralized technology options • Lack of meaningful participation Strategy • Efficient, sustainable utilization of resources – Self-reliance • Self-reliance – – – – – – Efficiency (production and consumption) Sustainable utilization of natural resources Value to economy Leveraging external resources Role of private sector Myanmar being “the last frontier” Energy demand is 1.4 times higher than GDP growth T o ta l F in a l E n e rg y C o n su m p tio n & G D P Energy Elasticity = ∆t Energy Consumption/ ∆t GDP 4.80 Ave. Energy Elasticity 1.4 : 1.0 lo g (E n e r g y ) 4.70 4.60 4.50 New Target 1:1 or lower 4.40 4.30 4.20 4.10 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 l o g (G D P ) Thailand Energy Elasticity 1985 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Energy-GDP Elasticity Avg.'85-2001 0.97 1.24 1.47 1.08 1.51 1.34 1.64 1.94 -3.50 0.47 0.58 0.97 1.07 1.40 Source : EIA,DOE, BP Statistic Review of World Energy, EGAT Electricity Elasticity (Yearly) 3.00 2.77 2.54 2.14 2.00 1.80 1.61 1.69 1.85 1.81 1.36 1.00 0.89 1.35 1.48 1.77 1.42 1.45 1.47 1.44 1.49 1.46 0.97 0.94 1.34 1.24 1.15 1.07 0.25 0.30 0.81 0.73 0.11 2012(Q1-Q3) 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -3.86 -4.62 Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt Power Generation Elasticity (1992-2001) 11.60 11.50 11.40 11.30 LN(PG) = 1.6985 LN(GDP) -13.8995 R LN(PG) 11.20 11.10 11.00 10.90 10.80 Power Generation Elasticity AVG. = 1.6985 10.70 10.60 14.40 14.50 14.60 14.70 14.80 LN(GDP) Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt 14.90 15.00 Power Generation Elasticity (2002-2011) 12.10 12.00 LN(PG) = 1.0661 LN(GDP) -4.3664 R 5 11.90 LN(PG) 11.80 11.70 11.60 Power Generation Elasticity AVG. = 1.0661 11.50 11.40 14.85 14.90 14.95 15.00 15.05 15.10 15.15 15.20 15.25 LN(GDP) Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt 15.30 15.35 15.40 Electricity Consumption Intensity 40.0 35.0 29.0 30.0 28.1 29.1 30.2 31.5 31.3 31.0 31.7 30.9 30.8 31.2 31.4 26.6 GWh /Billion Baht 25.0 20.9 20.0 15.0 14.4 14.3 14.7 15.6 16.3 16.8 18.1 18.0 17.5 18.7 21.6 22.3 23.2 24.1 24.7 19.6 10.0 5.0 0.0 Source: http://doc-eppo.eppo.go.th/key_indicators/elasticity/EE_EI_ELE.ppt 32.5 32.4 33.6 ในความเป็ นจริ ง มีความไม่แน่นอนจากเหตุการณ์ “ที่ไม่ คาดหมาย” • การพยากรณ์ไฟฟ้าหรื อเศรษฐกิจมักจะไม่ได้ นาเหตุการณ์ “ที่ไม่คาดหมาย” มาพิจารณาเพราะ ยากแก่การคาดหมาย – ตัวอย่างเช่น วิกฤตการเงินในปี 2540 การพุ่งสูงของราคาน ้ามันโลก ความรุนแรงทางการเมือง และอุทกภัย ร้ ายแรงในรอบ 50 ปี • ในอนาคต ความไม่แน่นอนจากภาวะเศรษฐกิจโลก สถานการณ์ด้านการเมืองในประเทศ และ สภาพภูมิอากาศที่แปรปรวน คาดว่าจะยังมีอยู่ต่อไป Actual GDP growth (%) 10.0 5.0 0.0 1990 -5.0 -10.0 -15.0 1995 2000 2005 2010 Comparison of trend lines with historical peak consumption MW Exponential MW 30,000 Linear 30,000 0.0731x y = 4E-60e 2 R = 0.9433 y = 831.43x - 2E+06 R2 = 0.9894 10,000 10,000 0 0 Historic peak demand เอ็ ก ซ์โพเนนเชียล (Historic peak demand) 19 85 19 87 19 89 19 91 19 93 19 95 19 97 19 99 20 01 20 03 20 05 20 07 20 09 20,000 19 85 19 87 19 89 19 91 19 93 19 95 19 97 19 99 20 01 20 03 20 05 20 07 20 09 20,000 Historic peak demand เชิงเส ้น (Historic peak demand) Past demand trajectory was linear but how come the official demand projections have always assumed exponential trend and over-estimated? Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Source: Energy for Environment Foundation, Study Project for Load Forecast – Executive Summary. Needed: bottom up forecasts • Thailand should invest in load forecasts that use a bottom-up approach • using industry-specific and sector-specific data on: – electricity demand trends – technology transitions trends