Transcript Document
Studentized Range Statistic q qr y L yS MSerror n similar to t 2 MSerror n Independent Groups yL yS Largest mean Smallest mean If means are selected randomly t is approx. If not – correct p of Type I error why? q t 2 Example y1 y2 y3 8.2 8.2 11.8 n5 r # steps 1 MSerror 12 dferror 12 11.8 8.2 3.6 q3 2.06 15.4 1.75 5 q( r 3,df 12, .05) critical value Fail to Reject = 3.77 Solving for smallest significant difference y L yS qr MSerror n yL yS qr MSerror n yL yS q.05( r ,df ) MSerror n 15.4 3.77 5 6.61 When to use q? When you expect: 1 2 3 4 Otherwise use F Newman-Kewls Uses q 1. 2. Arrange y' s in ascending order y1 y2 8.2 8.2 y3 11.8 Steps from yi to y j = i j 1 e.g. y1 & y3 3 3 1 3 steps smallest difference required was 6.61 If 2 steps 2 yL yS 3.08 15.4 5 5.41 r smallest significant difference 3 6.61 2 5.41 N-K 3. Treatment Matrix T1 T1 T2 T3 r r 0 3.6 3 6.61 3.6 2 5.41 T2 T3 4. Significant Difference Pattern T1 T1 T2 T3 T2 T3 Example y1 y2 y3 y4 y5 2 3 3 9 10 MSerror 9 n9 df 40 2 2.86(1) 3 3.44(1) 4 3.79(1) 5 4.04(1) Read Right to Left UNTIL 1. The row is completed 2. A nonsignificant difference is found 2. Reaching a column which was nonsignificant on the previous row T1 T1 T2 T3 T4 T5 r r 1 1 7 8 5 4.04 0 6 7 4 3.79 6 7 3 3.44 1 2 2.86 T2 T3 T4 T5 T1 T4 T5 T1 * * T2 * * T3 * * T4 T5 T2 T3 Unequal n’s Tukey-Kramer MSerror n Replace with MSerror MSerror nL nS 2 r q0.05( r ,df ) L larger y n S smaller y n MSerror MSerror nL nS 2 Behrens-Fisher r yL yS q0.05 (r ,df ) S L2 S S2 * nL nS 2 2 S L2 S S2 n nS df L2 2 2 2 SS SL n L nS nL 1 nS 1 * Each particular pairing of means must be examined with a different critical q value and their own S 2 Thus, the smallest significant difference will vary even for a given r r # of steps 1 Tukey's HSD N-K except qHSD always qr (largest) If there are 4 means, all differences are treated as 4 steps. Tukey's WSD qWSD qk qr 2 k # of means r = # of steps between the two means to be compared. Tukey's HSD Use largest qr for all pairwise comparisons T2 T3 T4 T5 r r 1 1 7 8 5 4.04 T2 6 7 4 3.79 T3 6 7 3 3.44 1 2 2.86 T1 T1 T4 T5 Dunnett’s control vs. treatments td (even if a priori) run standard t and use td T able(MSe ) or, solve for critical difference (CV) CV( yc yT j ) td 2MSe n yc 10 , yT1 8 , yT2 4 , MSe 30 , n 11 Go to Table for td (k , dfe ) td 2.32 2(30) 11 2.32(2.34) 5.42 CV 2.32 yc yT1 2 ns yc yT2 6 * p 0.05 Sheffé’s test It sets the family-wise Type-I Error rate ( .05 in our case) for ALL possible linear contrasts, not merely the pair-wise comparisons. Linear contrast MS(contrast) MS(error) Evaluate at (k-1) critical value for (df treatment(k-1)), df error Don’t use when only doing pair-wise, because it will be overly conservative. Post Hoc – Sheffé test L a SS con nL2 a 2j F j yj nL2 a 2j MS error F(1, df ) nL2 a 2j MSerror To evaluate 1) consult F table and find critical value F.05 (k1, dferror) (CV) 2) multiply CV by (k-1). (new CV) k = # of conditions FW will now be held at 0.05