Transcript Slide 1
Interfacial Tension and Interfacial
profiles:
The essentials of the microscopic approach
Costas Panayiotou
University of Thessaloniki, Greece
Aerogel
Production of porous materials:
Phase inversion with antisolvent (scCO2)
Polymer
2
1
L-L
solution
Antisolvent
Solvent
(α)
Production of porous membranes:
3. Phase inversion using supercritical CO2 as antisolvent
Polymer
V-L
V-L-L
V-L
Pressure
L-L
V-L-L
L-L
V-L
V-L
Solvent
Antisolvent
The concentration profiles through
an interface in a binary system
H
z
INHOMOGENEOUS SYSTEMS:
The Interfacial Tension
The key equations:
t
d SdT P e dV dA ie dN i
i 1
e
t e
P V i N i A e A
i 1
INHOMOGENEOUS SYSTEMS:The Interfacial Tension
Alternative Formulation
The key equations:
t
dE TdS P e dV dA ie dN i
i 1
Apply Euler relation:
t
e
E P V TS ie N i A Gint f G e A
i 1
where: Gintf : free-energy of the system WITH interface
:
Ge : free-energy of the system WITHOUT interface
Using ρi(z) and ψi(z)
or, density gradient is considered
N i A i ( z )dz
V Adz
H
H
t
A i ( z ) i ( z )dz
i 1
H
P P( z )dz
e
H
t
t
e
e
P ( z ) i ( z ) i i ( z ) i ( z ) i 0 ( z )
i 1
i 1
As a consequence, γ is given by
0 ( z)dz
No contribution from
density gradients yet
where
t
0 0 ( z ) e V 0 ( z ) i ( z )ie P e
i 1
With density gradient contributions:
0 c1 c2 ...
2
2
cd dz dz
2
0
or
2 0 ( z)dz
Density gradient in mixtures
Quadr. truncation
Δψ0 : no dens. gradients
di d j
1
( z )dz 0 ( z ) cij
dz
2
dz
dz
i
j
Applying Euler-Lagrange
minimization (calc. var.)
d 2 j
0
cij
0
2
i
dz
j
Multiplying these equations
by dρi/dz, summing over
all components i, and
integrating, we obtain:
d i d j
1
0 ( z ) cij
2 i j
dz dz
or
2 0 ( z)dz
i, j 1,2,...,t
Density gradient in mixtures II
With last equation go from
z-space to ρ-space
This equation when integrated gives the interfacial profile z(ρ) or ρ(z)
Combining with eq. for γ
we obtain:
0 ( z )
d1
dz
c 2 c d j c d j
1j
jj
11
j 1
d1 j 1 d1
2
d j
1 z
z z0
1 z 0
d j
c11 2 c1 j
c jj
j 1
d1 j 1 d1
0
d j
d j
2 c11 2 c1 j
c jj
d1 j 1 d1
j 1
1
1
2
2
d
1
1
2
1
0 2 d1
Density gradient in mixtures III
From Euler-Lagrange eq.:
d 2 j
0
'
e
e
i ,0 z , P i cij
i
dz 2
j
which upon differentiation
gives
i 1,2,...,t
d 2 1
d 2 2
z , P c11
c12
2
dz
dz 2
'
1, 0
'
2, 0
For binaries they are:
Assuming cij = ciicjj we get
e
e
1
d 2 1
d 2 2
z , P c 21
c 22
2
dz
dz 2
e
e
2
c22 1',0 z , P e 1e c11 2' ,0 z , P e 2e
d 2
d1
2' ,0
c11
1
1' , 0
c 22
T ,P,2
1
T ,P,2
1' , 0
c 22
2
2' , 0
c11
2
T , P , 1
T , P , 1
Density gradient / calculations
Influence parameters
κii dimensionless adjustable
In hydrogen-bonded:
For multimers we may write
φ is the segment fraction
cii v
*
i
ii
H H
*
cii i
E TS H vi
2
t
t
i 1
i 1
53
ii
i ( z) i ( z) ( z) ( z)
Local point thermodynamics
Requires in quadr. truncation
β=2/3 universal !
53
i
P PEOS dz 2 0 dz 2 P e PCP dz
e
Is the above truncation
adequate?
Requirement for internal consistency:
All four alternative ways of calculating γ
should give equivalent results.
In general, then:
2 dz
or
P
e
2
d
e
PEOS dz 2 dz 2 P PCP dz 2 c dz
dz
And without truncation?
From the general equation:
0 ( z ) i nm,i n dz
m
i
n,m
we obtain:
di d j
e
t
2 0 ( z ) cij
dz P P ( z ) dz
dz dz
i
j
by setting:
( z ) 0 ( z ) i nm ,i n
i
n,m
2
m
0 ( z ) cij
i
β has a universal value of 2 !
j
di d j
dz dz
32
28
24
γ / mN/m
20
16
12
8
4
0
-4
100
3
150
200
250
300
350
5 6 7
400
450
500
550
10
600
T/K
Figure 1: Experimental28 (symbols) and calculated (lines) surface
tensions of normal alkanes as a function of temperature. Numbers near
the curves indicate the number of carbons of the n-alkane.
30
25
20
γ / mN/m
Benzene
15
10
5
Acetone
CO2
0
250
300
350
400
450
500
550
600
T/K
Experimental28 (symbols) and calculated (lines) surface tensions
of pure fluids as a function of temperature.
24
-10
Thickness, D / 10 m
20
16
12
8
4
300
350
400
450
500
T/K
The calculated interfacial layer thickness as a function
of temperature for n-Hexane.
25
20
γ / mN/m
15
10
5
0
250
300
350
400
450
500
550
T/K
Experimental28 (symbols) and calculated (lines) surface tensions
of Methanol as a function of temperature.
25
20
γ / mN/m
15
10
5
0
250
300
350
400
450
500
550
T/K
Experimental28 (symbols) and calculated (lines) surface
tensions of Ethanol as a function of temperature.
34
32
PS
30
PIB
28
γ / mN/m
26
linear PE
24
22
20
PDMS
18
16
14
20
40
60
80
100
120
140
160
180
200
0
T/ C
Experimental1 (symbols) and calculated (solid lines)
surface tensions of pure polymers.
25
24
γ / mN/m
23
22
21
20
19
18
17
0,0
0,2
0,4
0,6
0,8
1,0
X1
Experimental29,30 (symbols) and predicted (lines) surface tensions of
Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K as a function of composition
6,0
5,8
-10
Thickness / 10 m
5,9
5,7
5,6
5,5
5,4
0,0
0,2
0,4
0,6
0,8
1,0
X1
The calculated interfacial layer thickness as a function of composition for
Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K.
0,035
303.15 K
0,030
P / MPa
0,025
0,020
293.15 K
0,015
0,010
0,005
0,0
0,2
0,4
0,6
X1
0,8
1,0
y1
Experimental (symbols)[PWN] and predicted VLE data for Ethanol + Hexane.
22
γ / mN/m
21
20
19
18
17
0,0
0,2
0,4
0,6
0,8
1,0
x1
Experimental (symbols)30-32 and predicted (lines) surface tensions of
Ethanol(1) + n-Hexane(2) mixture at 298.15 K as a function of composition.
323.15 K
0,06
P / MPa
0,05
318.15 K
0,04
0,03
0,02
0,01
0,0
0,2
0,4
0,6
X1
0,8
1,0
y1
VLE predictions of the model for the system:
1-Propanol+Hexane
0,7
0,8
Methanol(1) - Toluene(2) at 308.15 K
X1,liq=0.0275
0,6
0,7
X1,liq=0.0589
0,6
X1,liq=0.2988
0,7
0,5
0,5
0,6
X1
0,4
X1
X1
0,4
0,3
0,5
0,3
0,2
0,2
0,4
0,1
0,1
0,0
0,3
-10
-5
0
5
10
15
0,0
20
-15
-10
-5
0
5
-10
z / 10 m
10
15
20
-15
-10
-5
0
5
-10
z / 10 m
X1,liq=0.4188
20
0,98
X1,liq=0.8045
0,75
15
z / 10 m
0,90
0,80
10
-10
X1,liq=0.9485
0,96
(Near Azeotrope)
0,85
0,70
0,94
0,65
0,80
X1
0,60
X1
X1
0,92
0,90
0,75
0,55
0,88
0,50
0,70
0,86
0,45
0,65
0,40
-15
-10
-5
0
5
-10
z / 10 m
10
15
0,84
-15
-10
-5
0
5
-10
z / 10 m
10
15
20
-10
-5
0
5
10
15
20
-10
z / 10 m
Methanol(1) – Toluene(2) at 308.15 K: The evolution of composition
profiles across the interface, as predicted by the present model.
0,055
X1,liq=0.0525
(Near Azeotrope)
1-Propanol(1) - n-Hexane(2) at 298.15 K
0,045
0,050
0,040
0,045
X1,liq=0.0245
0,040
X1
0,035
X1
0,030
0,035
0,030
0,025
0,025
0,020
0,020
0,015
0,015
-10
0,010
-15
-10
-5
0
5
10
15
0
10
20
-10
z / 10 m
20
-10
z / 10 m
0,12
0,8
0,7
0,10
X1,liq=0.7850
0,6
X1,liq=0.1050
0,08
X1
X1
0,5
0,4
0,06
0,3
0,04
0,2
0,1
0,02
0,0
-15
-10
-5
0
5
-10
z / 10 m
10
15
20
-15
-10
-5
0
5
10
15
-10
z / 10 m
1-Propanol(1) – n-Hexane(2) at 298.15 K: The evolution with liquid
phase composition of the interfacial composition profiles as
predicted by the present model.
Inhomogeneous Systems / Interfaces
(Langmuir, 2002, 18, 8841, IEC Res. 2004, 43, 6592) )
30
25
20
γ / mN/m
Benzene
15
10
5
Acetone
CO2
0
250
300
350
400
450
500
550
600
T/K
Experimental (symbols) and calculated (lines) surface tensions
of pure fluids as a function of temperature.
34
32
PS
30
PIB
28
γ / mN/m
26
linear PE
24
22
20
PDMS
18
16
14
20
40
60
80
100
120
140
160
180
200
0
T/ C
Experimental (symbols) and calculated (solid lines)
surface tensions of pure polymers.
25
24
γ / mN/m
23
22
21
20
19
18
17
0,0
0,2
0,4
0,6
0,8
1,0
X1
Experimental (symbols) and predicted (lines) surface tensions of
Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K as a function of composition
Process Design and Development:
Processing Polymeric Materials
with Supercritical Fluids
Pressure Quench:
A Process for Porous-Structure Formation
Tg / K
420
Rubbery
360
Glassy
300
0
4
8
12
Pressure / MPa
16
20
Figure : Porous structures of polystyrene,
80 οC, (α) 180 bar, (β) 230 bar, (γ) 280 bar, (δ) 330 bar, (ε) 380 bar
The Nucleation Theory
• According to the nucleation theory, in a closed isothermal system in
chemical equilibrium the difference of the free energy per unit volume
related to the formation of new phase
3 cluster is given by the following
4 r
equation :
2
G
3
P 4 r
dG
2
0 rc
dr
P
ΔG *hom
16 3
3ΔP 2
Modeling the foaming of polymers with scCO2:
Nucleation Theory
Activation energy for homogeneous nucleation:
ΔG *hom
16 3
3ΔP 2
Nucleation rate:
ΔG *hom
N O CO f O exp
,
kT
f O ZRimp (4 r )
2
C
Total number of nuclei:
N total
t ,vitr
0
N O dt
P ,vitr
P , sat
NO
dP
dP / dt
2
rc
P
0.14
80
o
420
C
390
100 C
o
120 C
0.12
0.10
360
0.08
330
Tg / K
CO2 weight fraction
o
0.06
0.04
Rubbery
300
270
Glassy
0.02
240
0.00
0
10
20
30
40
Pressure / MPa
Figure: Sorption of CO2 in polystyrene.
Experimental data:
(o) 100 οC, () 120 οC, (—) NRHB
50
210
0
5
10
15
20
25
30
Pressure / MPa
Figure: Glass transition temperature for the
system polystyrene-CO2, () experimental
data, (----) CO2 vapor pressure, (—) NRHB
System CO2 – polystyrene:
γmixr = (1-wCO2) γpolr
Surface tension / mN m-1
40
30
20
10
340
360
380
400
420
440
460
480
Temperature / K
Surface tension of polystyrene versus temperature,
() experimental data, (—) NRHB
Critical radius for nucleus formation in PS-CO2
20
o
80 C
o
100 C
o
120 C
Rc / nm
15
10
5
0
0
10
20
Pressure / MPa
30
40
ΝRΗΒ combined with nucleation theory
500
o
80 C
o
100 C
o
120 C
ΔG*hom / kT
400
300
200
100
0
0
10
20
30
40
Pressure / MPa
Activation energy for homogeneous nucleation (polystyrene-CO2 )
11
10
10
10
9
10
8
10
11
10
10
10
9
10
Nuclei density / nuclei cm-3
Cell density / cells cm-3
ΝRΗΒ combined with nucleation theory
8
10
10
20
30
40
50
60
Pressure / MPa
Figure: Observed cell density, (), and calculated nuclei density, (—), versus
pressure for the system polystyrene-CO2 at 80 oC
ΝRΗΒ combined with nucleation theory
10
11
10
10
9
10
8
10
Cell density / cells cm-3
10
10
9
10
8
10
80
90
100
110
Nuclei density / nuclei cm-3
11
10
120
Temperature / oC
Observed cell density, (), and calculated nuclei density, (—), versus
temperature for the system polystyrene-CO2 at 330 bar