Transcript Slide 1
Interfacial Tension and Interfacial profiles: The essentials of the microscopic approach Costas Panayiotou University of Thessaloniki, Greece Aerogel Production of porous materials: Phase inversion with antisolvent (scCO2) Polymer 2 1 L-L solution Antisolvent Solvent (α) Production of porous membranes: 3. Phase inversion using supercritical CO2 as antisolvent Polymer V-L V-L-L V-L Pressure L-L V-L-L L-L V-L V-L Solvent Antisolvent The concentration profiles through an interface in a binary system H z INHOMOGENEOUS SYSTEMS: The Interfacial Tension The key equations: t d SdT P e dV dA ie dN i i 1 e t e P V i N i A e A i 1 INHOMOGENEOUS SYSTEMS:The Interfacial Tension Alternative Formulation The key equations: t dE TdS P e dV dA ie dN i i 1 Apply Euler relation: t e E P V TS ie N i A Gint f G e A i 1 where: Gintf : free-energy of the system WITH interface : Ge : free-energy of the system WITHOUT interface Using ρi(z) and ψi(z) or, density gradient is considered N i A i ( z )dz V Adz H H t A i ( z ) i ( z )dz i 1 H P P( z )dz e H t t e e P ( z ) i ( z ) i i ( z ) i ( z ) i 0 ( z ) i 1 i 1 As a consequence, γ is given by 0 ( z)dz No contribution from density gradients yet where t 0 0 ( z ) e V 0 ( z ) i ( z )ie P e i 1 With density gradient contributions: 0 c1 c2 ... 2 2 cd dz dz 2 0 or 2 0 ( z)dz Density gradient in mixtures Quadr. truncation Δψ0 : no dens. gradients di d j 1 ( z )dz 0 ( z ) cij dz 2 dz dz i j Applying Euler-Lagrange minimization (calc. var.) d 2 j 0 cij 0 2 i dz j Multiplying these equations by dρi/dz, summing over all components i, and integrating, we obtain: d i d j 1 0 ( z ) cij 2 i j dz dz or 2 0 ( z)dz i, j 1,2,...,t Density gradient in mixtures II With last equation go from z-space to ρ-space This equation when integrated gives the interfacial profile z(ρ) or ρ(z) Combining with eq. for γ we obtain: 0 ( z ) d1 dz c 2 c d j c d j 1j jj 11 j 1 d1 j 1 d1 2 d j 1 z z z0 1 z 0 d j c11 2 c1 j c jj j 1 d1 j 1 d1 0 d j d j 2 c11 2 c1 j c jj d1 j 1 d1 j 1 1 1 2 2 d 1 1 2 1 0 2 d1 Density gradient in mixtures III From Euler-Lagrange eq.: d 2 j 0 ' e e i ,0 z , P i cij i dz 2 j which upon differentiation gives i 1,2,...,t d 2 1 d 2 2 z , P c11 c12 2 dz dz 2 ' 1, 0 ' 2, 0 For binaries they are: Assuming cij = ciicjj we get e e 1 d 2 1 d 2 2 z , P c 21 c 22 2 dz dz 2 e e 2 c22 1',0 z , P e 1e c11 2' ,0 z , P e 2e d 2 d1 2' ,0 c11 1 1' , 0 c 22 T ,P,2 1 T ,P,2 1' , 0 c 22 2 2' , 0 c11 2 T , P , 1 T , P , 1 Density gradient / calculations Influence parameters κii dimensionless adjustable In hydrogen-bonded: For multimers we may write φ is the segment fraction cii v * i ii H H * cii i E TS H vi 2 t t i 1 i 1 53 ii i ( z) i ( z) ( z) ( z) Local point thermodynamics Requires in quadr. truncation β=2/3 universal ! 53 i P PEOS dz 2 0 dz 2 P e PCP dz e Is the above truncation adequate? Requirement for internal consistency: All four alternative ways of calculating γ should give equivalent results. In general, then: 2 dz or P e 2 d e PEOS dz 2 dz 2 P PCP dz 2 c dz dz And without truncation? From the general equation: 0 ( z ) i nm,i n dz m i n,m we obtain: di d j e t 2 0 ( z ) cij dz P P ( z ) dz dz dz i j by setting: ( z ) 0 ( z ) i nm ,i n i n,m 2 m 0 ( z ) cij i β has a universal value of 2 ! j di d j dz dz 32 28 24 γ / mN/m 20 16 12 8 4 0 -4 100 3 150 200 250 300 350 5 6 7 400 450 500 550 10 600 T/K Figure 1: Experimental28 (symbols) and calculated (lines) surface tensions of normal alkanes as a function of temperature. Numbers near the curves indicate the number of carbons of the n-alkane. 30 25 20 γ / mN/m Benzene 15 10 5 Acetone CO2 0 250 300 350 400 450 500 550 600 T/K Experimental28 (symbols) and calculated (lines) surface tensions of pure fluids as a function of temperature. 24 -10 Thickness, D / 10 m 20 16 12 8 4 300 350 400 450 500 T/K The calculated interfacial layer thickness as a function of temperature for n-Hexane. 25 20 γ / mN/m 15 10 5 0 250 300 350 400 450 500 550 T/K Experimental28 (symbols) and calculated (lines) surface tensions of Methanol as a function of temperature. 25 20 γ / mN/m 15 10 5 0 250 300 350 400 450 500 550 T/K Experimental28 (symbols) and calculated (lines) surface tensions of Ethanol as a function of temperature. 34 32 PS 30 PIB 28 γ / mN/m 26 linear PE 24 22 20 PDMS 18 16 14 20 40 60 80 100 120 140 160 180 200 0 T/ C Experimental1 (symbols) and calculated (solid lines) surface tensions of pure polymers. 25 24 γ / mN/m 23 22 21 20 19 18 17 0,0 0,2 0,4 0,6 0,8 1,0 X1 Experimental29,30 (symbols) and predicted (lines) surface tensions of Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K as a function of composition 6,0 5,8 -10 Thickness / 10 m 5,9 5,7 5,6 5,5 5,4 0,0 0,2 0,4 0,6 0,8 1,0 X1 The calculated interfacial layer thickness as a function of composition for Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K. 0,035 303.15 K 0,030 P / MPa 0,025 0,020 293.15 K 0,015 0,010 0,005 0,0 0,2 0,4 0,6 X1 0,8 1,0 y1 Experimental (symbols)[PWN] and predicted VLE data for Ethanol + Hexane. 22 γ / mN/m 21 20 19 18 17 0,0 0,2 0,4 0,6 0,8 1,0 x1 Experimental (symbols)30-32 and predicted (lines) surface tensions of Ethanol(1) + n-Hexane(2) mixture at 298.15 K as a function of composition. 323.15 K 0,06 P / MPa 0,05 318.15 K 0,04 0,03 0,02 0,01 0,0 0,2 0,4 0,6 X1 0,8 1,0 y1 VLE predictions of the model for the system: 1-Propanol+Hexane 0,7 0,8 Methanol(1) - Toluene(2) at 308.15 K X1,liq=0.0275 0,6 0,7 X1,liq=0.0589 0,6 X1,liq=0.2988 0,7 0,5 0,5 0,6 X1 0,4 X1 X1 0,4 0,3 0,5 0,3 0,2 0,2 0,4 0,1 0,1 0,0 0,3 -10 -5 0 5 10 15 0,0 20 -15 -10 -5 0 5 -10 z / 10 m 10 15 20 -15 -10 -5 0 5 -10 z / 10 m X1,liq=0.4188 20 0,98 X1,liq=0.8045 0,75 15 z / 10 m 0,90 0,80 10 -10 X1,liq=0.9485 0,96 (Near Azeotrope) 0,85 0,70 0,94 0,65 0,80 X1 0,60 X1 X1 0,92 0,90 0,75 0,55 0,88 0,50 0,70 0,86 0,45 0,65 0,40 -15 -10 -5 0 5 -10 z / 10 m 10 15 0,84 -15 -10 -5 0 5 -10 z / 10 m 10 15 20 -10 -5 0 5 10 15 20 -10 z / 10 m Methanol(1) – Toluene(2) at 308.15 K: The evolution of composition profiles across the interface, as predicted by the present model. 0,055 X1,liq=0.0525 (Near Azeotrope) 1-Propanol(1) - n-Hexane(2) at 298.15 K 0,045 0,050 0,040 0,045 X1,liq=0.0245 0,040 X1 0,035 X1 0,030 0,035 0,030 0,025 0,025 0,020 0,020 0,015 0,015 -10 0,010 -15 -10 -5 0 5 10 15 0 10 20 -10 z / 10 m 20 -10 z / 10 m 0,12 0,8 0,7 0,10 X1,liq=0.7850 0,6 X1,liq=0.1050 0,08 X1 X1 0,5 0,4 0,06 0,3 0,04 0,2 0,1 0,02 0,0 -15 -10 -5 0 5 -10 z / 10 m 10 15 20 -15 -10 -5 0 5 10 15 -10 z / 10 m 1-Propanol(1) – n-Hexane(2) at 298.15 K: The evolution with liquid phase composition of the interfacial composition profiles as predicted by the present model. Inhomogeneous Systems / Interfaces (Langmuir, 2002, 18, 8841, IEC Res. 2004, 43, 6592) ) 30 25 20 γ / mN/m Benzene 15 10 5 Acetone CO2 0 250 300 350 400 450 500 550 600 T/K Experimental (symbols) and calculated (lines) surface tensions of pure fluids as a function of temperature. 34 32 PS 30 PIB 28 γ / mN/m 26 linear PE 24 22 20 PDMS 18 16 14 20 40 60 80 100 120 140 160 180 200 0 T/ C Experimental (symbols) and calculated (solid lines) surface tensions of pure polymers. 25 24 γ / mN/m 23 22 21 20 19 18 17 0,0 0,2 0,4 0,6 0,8 1,0 X1 Experimental (symbols) and predicted (lines) surface tensions of Cyclohexane(1) + n-Hexane(2) mixture at 293.15 K as a function of composition Process Design and Development: Processing Polymeric Materials with Supercritical Fluids Pressure Quench: A Process for Porous-Structure Formation Tg / K 420 Rubbery 360 Glassy 300 0 4 8 12 Pressure / MPa 16 20 Figure : Porous structures of polystyrene, 80 οC, (α) 180 bar, (β) 230 bar, (γ) 280 bar, (δ) 330 bar, (ε) 380 bar The Nucleation Theory • According to the nucleation theory, in a closed isothermal system in chemical equilibrium the difference of the free energy per unit volume related to the formation of new phase 3 cluster is given by the following 4 r equation : 2 G 3 P 4 r dG 2 0 rc dr P ΔG *hom 16 3 3ΔP 2 Modeling the foaming of polymers with scCO2: Nucleation Theory Activation energy for homogeneous nucleation: ΔG *hom 16 3 3ΔP 2 Nucleation rate: ΔG *hom N O CO f O exp , kT f O ZRimp (4 r ) 2 C Total number of nuclei: N total t ,vitr 0 N O dt P ,vitr P , sat NO dP dP / dt 2 rc P 0.14 80 o 420 C 390 100 C o 120 C 0.12 0.10 360 0.08 330 Tg / K CO2 weight fraction o 0.06 0.04 Rubbery 300 270 Glassy 0.02 240 0.00 0 10 20 30 40 Pressure / MPa Figure: Sorption of CO2 in polystyrene. Experimental data: (o) 100 οC, () 120 οC, (—) NRHB 50 210 0 5 10 15 20 25 30 Pressure / MPa Figure: Glass transition temperature for the system polystyrene-CO2, () experimental data, (----) CO2 vapor pressure, (—) NRHB System CO2 – polystyrene: γmixr = (1-wCO2) γpolr Surface tension / mN m-1 40 30 20 10 340 360 380 400 420 440 460 480 Temperature / K Surface tension of polystyrene versus temperature, () experimental data, (—) NRHB Critical radius for nucleus formation in PS-CO2 20 o 80 C o 100 C o 120 C Rc / nm 15 10 5 0 0 10 20 Pressure / MPa 30 40 ΝRΗΒ combined with nucleation theory 500 o 80 C o 100 C o 120 C ΔG*hom / kT 400 300 200 100 0 0 10 20 30 40 Pressure / MPa Activation energy for homogeneous nucleation (polystyrene-CO2 ) 11 10 10 10 9 10 8 10 11 10 10 10 9 10 Nuclei density / nuclei cm-3 Cell density / cells cm-3 ΝRΗΒ combined with nucleation theory 8 10 10 20 30 40 50 60 Pressure / MPa Figure: Observed cell density, (), and calculated nuclei density, (—), versus pressure for the system polystyrene-CO2 at 80 oC ΝRΗΒ combined with nucleation theory 10 11 10 10 9 10 8 10 Cell density / cells cm-3 10 10 9 10 8 10 80 90 100 110 Nuclei density / nuclei cm-3 11 10 120 Temperature / oC Observed cell density, (), and calculated nuclei density, (—), versus temperature for the system polystyrene-CO2 at 330 bar