Transcript Slide 1
CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre T: +27(0)51 401 9111 | [email protected] | www.ufs.ac.za +27(0)51 401 2194 | [email protected] | www.ufs.ac.za Density Functional Theory calculations with High Performance Computing predicts chemical reactivity. Jeanet Conradie 1. Catalytic Application Monsanto Process [Rh(CO)2(I)2]- This Study Rh(I)-b-diketonato complexes rate determining Rh Rh I III 1 electrochemical oxidation 2 substitution 3 chemical oxidation 2. The complexes R' R' CO O RhI Rh CO O R P(OPh)3 O I P(OPh)3 O R R' R' RhI I Rh O R CO O O O PX3 R PX3 = P(OCH2)3CCH3 PX3 = PPh3 3. The complexes R' X O RhI O Y R donate electron density via conjugation to Rh more electron donating in terms of sum of group electronegativities cR + cR’ R Fc Fc Fc Ph CH3 R' Fc Ph CH3 Ph Ph CCl3 Fc (1) (2) (3) (4) (5) (6) CH3 CH3 (7) CF3 Fc (8) CF3 Ph (9) CF3 CH3 (10) CF3 CF3 (11) cCF3 (3.01) > cCCl3 (2.76) > cCH3 (2.34) > cPh (2.21) > cFc (1.87) (high c) e- withdrawing (low c) e- donating Fc = FeII 4. Experimental: Electrochemical oxidation R' CO O CO O I R (3): PX3 = P(OCH2)3CCH3 (4): PX3 = PPh3 electrochemical oxidation 3 and 4 Rh Rh CO O I I Rh PR3 (5) electrochemical oxidation 5 P(OPh)3 O O R R R P(OPh)3 O O I Rh O R' R' R' (2) electrochemical oxidation 2 (1) electrochemical oxidation 1 Experimental: Electrochemical oxidation 1 I oxidation III Rh - Rh -2e (11) R O I (10) P(OPh)3 Rh P(OPh)3 O R' one electro-active center R Fc Fc Fc Ph CH3 R' Fc Ph CH3 Ph Ph (1) (2) (3) (4) (5) CH3 CH3 (7) (8) CF3 Fc (9) CF3 Ph CF3 CH3 (10) CF3 CF3 (11) (7) more electron donating more electron donating Rh(I) easier oxidized to Rh(III) J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287. 5. Experimental: Electrochemical oxidation 1 I [Rh (RCOCHCOFc)(P(OPh)3)2] -2e- III [Rh (RCOCHCOFc)(P(OPh)3)2] I oxidation III Rh - Rh -2e R O Rh I FeII R Fc Fc Fc Ph CH3 -1e- [RhIII(RCOCHCOFc+)(P(OPh)3)2]3+ (8) P(OPh)3 P(OPh)3 O 2+ (3) two electro-active centers R' Fc Ph CH3 Ph Ph (1) (2) (3) (4) (5) CH3 CH3 (7) (8) CF3 Fc (9) CF3 Ph CF3 CH3 (10) CF3 CF3 (11) 6. more electron donating J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287. Experimental: Electrochemical oxidation 1 I [Rh (RCOCHCOFc)(P(OPh)3)2] -2e- III [Rh (RCOCHCOFc)(P(OPh)3)2] I oxidation III Rh - Rh -2e R O Rh I FeII R Fc Fc Fc Ph CH3 -1e- [RhIII(RCOCHCOFc+)(P(OPh)3)2]3+ (8) P(OPh)3 P(OPh)3 O 2+ (3) two electro-active centers (1) has three electro-active centers R' Fc Ph CH3 Ph Ph (1) (2) (3) (4) (5) CH3 CH3 (7) (8) CF3 Fc (9) CF3 Ph CF3 CH3 (10) CF3 CF3 (11) 7. more electron donating J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287. Experimental: Electrochemical oxidation 1 I [Rh (RCOCHCOFc)(P(OPh)3)2] -2e- III 2+ [Rh (RCOCHCOFc)(P(OPh)3)2] -1e- [RhIII(RCOCHCOFc+)(P(OPh)3)2]3+ I oxidation III Rh - Rh -2e (8) R O Rh I FeII R Fc Fc Fc Ph CH3 P(OPh)3 P(OPh)3 O (3) two electro-active centers (1) has three electro-active centers R' Fc Ph CH3 Ph Ph (1) (2) (3) (4) (5) CH3 CH3 (7) (8) CF3 Fc (9) CF3 Ph CF3 CH3 (10) CF3 CF3 (11) (1) more electron donating more electron donating 8. Rh(I) easier oxidized to Rh(III) J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287. Experimental: Electrochemical oxidation 1 [RhI(RCOCHCOR')(P(OPh)3)2] -2e- [RhIII(RCOCHCOR')(P(OPh)3)2]2+ I oxidation III Rh - Rh -2e R' P(OPh)3 O RhI O P(OPh)3 R R Fc Fc Fc Ph CH3 R' Fc Ph CH3 Ph Ph (1) (2) (3) (4) (5) CH3 CH3 (7) (8) CF3 Fc (9) CF3 Ph CF3 CH3 (10) CF3 CF3 (11) more electron donating more electron donating Rh(I) easier oxidized to Rh(III) J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287. 9. 10. DFT and Electrochemical oxidation 1 Oxidation of Rh(I) to Rh(III) corresponds to the removal of 2 electrons from the highest molecular orbital, the HOMO of the complex. I Rh LUMO HOMO higher energy HOMO – electrons easier removed – easier oxidized more electron donating Rh(I) easier oxidized to Rh(III) Gaussian 09 with B3LYP functional and 6-311G(d,p) basis set for C, H, O, F, P, Fe and Lanl2dz for Rh oxidation - -2e III Rh 11. DFT and Electrochemical oxidation 1 Oxidation of Rh(I) to Rh(III) corresponds to the removal of 2 electrons from the highest molecular orbital, the HOMO of the complex. I Rh LUMO HOMO higher energy HOMO – electrons easier removed – easier oxidized more electron donating Rh(I) easier oxidized to Rh(III) J. Conradie, Electro Chim. Acta 110 (2013) 718. oxidation - -2e III Rh 12. Experimental: Electrochemical oxidation 2 R' R - 2e2+ R' O RhIII O R +e - + Fc For R' = Fc - e3+ more electron donating O 6 5 4 y = 7.826x + 2.710 R2 = 0.963 3 2 0.0 0.1 0.2 0.3 0.4 6 5 4 y = 8.053x + 2.193 R2 = 0.954 3 2 0.0 0.1 0.2 0.3 0.4 E 0/(Fc) / V O RhIII O R 0.5 E pa(Rh) / V c1+c2 (Gordy scale) RhI c1+c2 (Gordy scale) Rh Fc O CV data from: Conradie J. and Swarts J.C., Dalton Trans., 2011, 40, 5844-5851 0.5 DFT and Electrochemical oxidation 2 R' LUMO O Rh I O -2e- -e- HOMO R HOMO-1 - 2e2+ R' O RhIII O R +e - + Fc For R' = Fc - e3+ O RhIII O R • • First oxidation: 2e- from HOMO (RhI to RhIII) Second oxidation: e- from HOMO-1 (Fc to Fc+) CV data from: Conradie J. and Swarts J.C., Dalton Trans., 2011, 40, 5844-5851 DFT: von Eschwege, K.G. and Conradie, J., S. Afr. J. Chem., 2011, 64, 203-209. 13. DFT and Electrochemical oxidation 2 R' LUMO O Rh I O -2e- -e- HOMO R HOMO-1 - 2e2+ R' O RhIII O R +e - + Fc For R' = Fc - e3+ O RhIII O R • • First oxidation: 2e- from HOMO (RhI to RhIII) Second oxidation: e- from HOMO-1 (Fc to Fc+) higher energy HOMO – electrons easier removed – easier oxidized 14. DFT and Electrochemical oxidation 3 15. R' CO O RhI O P(OCH2)3CCH3 R - 2e2+ R' O CO RhIII P(OCH2)3CCH3 O R higher energy HOMO electrons easier removed easier oxidized Erasmus, J.J.C. and Conradie, J., Dalton Transactions, 2013, 42, 8655–8666. DFT and Electrochemical oxidation 4 16. R' CO O RhI O PPh3 R - 2e2+ R' O CO RhIII PPh3 O R higher energy HOMO electrons easier removed easier oxidized Ferreira, H., Conradie, M.M. and Conradie, J., Electrochim. Acta, 2013, 113, 519-526. DFT and Electrochemical oxidation 5 17. Fc CO O Rh I O CO + e- - e- R 1+ + Fc CO O Rh O I CO R - 2e+ Fc 3+ O CO RhIII CO O R • • HOMO on ferrocene First oxidation: e- from HOMO (Fc to Fc+) CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542. DFT and Electrochemical oxidation 5 18. Fc CO O Rh I O CO + e- - e- R 1+ + Fc CO O Rh O I CO R - 2e+ Fc 3+ O CO RhIII CO O R • • HOMO on ferrocene First oxidation: e- from HOMO (Fc to Fc+) CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542. DFT and Electrochemical oxidation 5 19. Fc CO O Rh I O CO + e- - e- R 1+ + Fc CO O Rh O I CO R - 2e+ Fc 3+ O CO RhIII CO O R higher energy HOMO electrons easier removed easier oxidized CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542. DFT and Electrochemical oxidation: Summary 20. 21. Experimental: Substitution reactions R' CO O I PX3 CO O O I I Rh O R' R' R' PR3 R PX3 = P(OCH2)3CCH3 PX3 = PPh3 O R I Rh Rh Rh CO 2CO O O R P(OPh)3 O P(OPh)3 R P(OPh)3 22. Experimental: Substitution reactions R' O I PX3 CO O O I I Rh O R' R' R' CO R PX3 = P(OCH2)3CCH3 PX3 = PPh3 O R I Rh Rh Rh PX3 CO 2CO O O R R substitution 3 substitution 1 N P(OPh)3 O P(OPh)3 P(OPh)3 substitution 2 N + N Rh N • Experimental1 DV# and large negative DS#: – associative mechanism involving the formation of a 5-c species. • The FMO Theory simplifies reactions to interactions between frontier orbitals. 1 J.G. Leipoldt, E.C. Steynberg, R. van Eldik, Inorg. Chem. 26 (1987) 3068. Experimental and DFT: Substitution reaction 1 23. R' O RhI O R P(OPh)3 R' P(OPh)3 O TS RhI O P(OPh)3 R • DFT calculated TS: HOMO HOMO – Associative mechanism P(OPh)3 Rh(b)(cod) – 5-coordinate TS – Rh is electron acceptor (electrophile) – electron withdrawing groups stabilize TS, more reactive k2 from J.G. Leipoldt, G.J. Lamprecht and E.C. Steinberg, J. Organomet. Chem. 397 (1990) 239 DFT from Conradie, J. Inorg. Chim. Acta, 2013, 406, 211-216. 24. Experimental and DFT: Substitution reaction 1 R' O RhI O R P(OPh)3 P(OPh)3 O RhI O R P(OPh)3 lower energy HOMO electrons easier accepted larger substitution k E HOMO(calc) / eV R' -4.0 -4.1 -4.2 -4.3 -4.4 -4.5 -4.6 -4.7 -4.8 -4.9 -5.0 y = -0.125x - 3.728 • DFT calculated TS: R2 = 0.979 – Associative mechanism 0 5 – 5-coordinate TS lnk 2 – Rh is electron acceptor (electrophile) – electron withdrawing groups stabilize TS, more reactive 10 k2 from J.G. Leipoldt, G.J. Lamprecht and E.C. Steinberg, J. Organomet. Chem. 397 (1990) 239 DFT from Conradie, J. Inorg. Chim. Acta, 2013, 406, 211-216. Experimental and DFT: Substitution reaction 2 25. R' O RhI O R N -4.0 + N Rh N lower energy HOMO electrons easier accepted larger substitution k E HOMO(calc) / eV N y = -0.074x - 3.963 R2 = 0.978 -4.2 -4.4 -4.6 -4.8 -5.0 0 5 10 lnk 2 k2 from J.G. Leipoldt and E. C. Grobler, Trans. Met. Chem. 11 (1986) 110 and T.G. Vosloo, W.C. Du Plessis, J.C. Swarts, Inorg. Chim. Acta 331 (2002) 188. DFT from Conradie, J. J. Organomet. Chem. 2012, 719, 8-13 15 Experimental and DFT: Substitution reaction 3 R' CO O RhI O CO R R' O RhI O lower energy HOMO electrons easier accepted larger substitution k R k2 from J.G. Leipoldt, S.S. Basson, J.J.J. Schlebush and, E.C. Grobler Inorg. Chim. Acta., 1982, 62, 113–115. DFT from Conradie, S. Afr. J. Chem; 2013, 66, 54-59 26. 27. Experimental: Oxidative addition R' CO O I PX3 chemical oxidation 2 and 3 CH3 O R Rh Rh 2CO I P(OPh)3 O O R R chemical oxidation 1 CH3I CH3 R' P(OPh)3 O III RhIII PX3 O I Rh CO P(OPh)3 O P(OPh)3 CO O R I Rh R PX3 = P(OCH2)3CCH3 PX3 = PPh3 R' O I PR3 CH3I CO O Rh O R' R' R' P(OPh)3 O R I Experimental and DFT: Oxidative addition 1 28. R' P(OPh)3 O Rh O I P(OPh)3 R k2 R R' +CH3I CH3 O P(OPh)3 Rh P(OPh)3 O I • DFT calculated TS: – Associative mechanism M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126. Experimental and DFT: Oxidative addition 1 29. R' P(OPh)3 O Rh O I P(OPh)3 R k2 R R' +CH3I CH3 O P(OPh)3 Rh P(OPh)3 O I • DFT calculated TS: – Associative mechanism M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126. Experimental and DFT: Oxidative addition 1 29. R' P(OPh)3 O Rh O I P(OPh)3 R k2 R R' +CH3I CH3 O P(OPh)3 Rh P(OPh)3 O I • DFT calculated TS: higher energy HOMO – Associative mechanism electrons easier donated – Rh nucleophile larger oxidative addition k – electron donating groups makes Rh more electron rich, i.e more reactive towards o.a.M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126. Experimental and DFT: Oxidative addition 1 30. R' P(OPh)3 O RhI O P(OPh)3 R k2 R R' +CH3I CH3 O P(OPh)3 Rh P(OPh)3 O I higher energy HOMO electrons easier donated larger oxidative addition k more electron donating Rh(I) easier oxidized to Rh(III) k2 from: G.J. Van Zyl, G.J. Lamprecht, J.G. Leipoldt, T.W. Swaddle, Inorg. Chim. Acta 143 (1988) 223-227 M.M. Conradie, J.J.C. Erasmus, J. Conradie, Polyhedron 30 (2011) 2345. DFT from Conradie, J., Electrochimica Acta; 2013, 110, 718-725 Experimental and DFT: Oxidative addition 2 R' CO O Rh O I P(OCH2)3CCH3 R k2 R R' +CH3I CH3 O CO Rh P(OCH2)3CCH3 O I higher energy HOMO electrons easier donated larger oxidative addition k 2 more electron donating Rh(I) easier oxidized to Rh(III) Erasmus, J.J.C. and Conradie, J., Inorg. Chim. Acta; 2011, 375, 128-134 Erasmus, J.J.C. and Conradie, J., Cent. Eur. J. Chem. 2012, 10(1) 256-566. Erasmus, J.J.C., Conradie, M.M. and Conradie, J., Reac. Kinet. Cat. Lett. 2012, 105(2) 233-249. Erasmus, J.J.C. and Conradie, J., Dalton Transactions, 2013, 42, 8655–8666. 31. Experimental and DFT: Oxidative addition 3 R' CO O RhI O PPh3 R k2 R R' +CH3I CH3 O CO Rh PPh3 O I higher energy HOMO electrons easier donated larger oxidative addition k more electron donating Rh(I) easier oxidized to Rh(III) k2 from:Basson, S. S.; Leipoldt, J. G.; Roodt, A.; Venter, J. A.; van der Walt, T. J. Inorg. Chim. Acta, 1986, 119, 35. Conradie, J., Lamprecht, G.J., Roodt, A. and Swarts, J.C. Polyhedron, 23, 2007, 5075-5087. Conradie, M.M. and Conradie, J. Inorg. Chim. Acta., 2008, 361, 208-218 and 2008, 361, 2285-2295. Stuurman, N.F. and Conradie, J. J Organomet. Chem., 2009, 694, 259-268. Conradie, J. and Swarts, J.C. Organometallics, 2009, 28 (4), 1018-1026. DFT Conradie, J., unpublished 32. Experimental and DFT: Summary kinetics 33. Conclusion 34. R' X O RhI O Y R • The stability/reactivity of the HOMO of [Rh(RCOCHCOR')(XY)] complexes is related to the electronic influence of R and R' on Rh – more electron donating, higher HOMO energy • The energy of the HOMO of [Rh(RCOCHCOR')(XY)] relates to: – experimental electrochemical oxidation potential – experimental substitution kinetic rate constants – experimental oxidative addition kinetic rate constants • Close correlation between the experimental and the theoretical descriptors enable the design of related rhodium complexes with a particular reactivity. The Chemistry Department at the UFS for available facilities HPC Warehouse Facility of the UFS for computational facilities CTCC and the University of Tromsø for computational facilities The National Research Foundation for financial support +27(0)51 401 2194 | [email protected] | www.ufs.ac.za Experimental: Chemical- and Electrochemical oxidation and Substitution reactions R' CO O PX3 I R' R' R' CO O O Rh PR3 O O R PX3 = P(OCH2)3CCH3 PX3 = PPh3 electrochemical oxidation 3 and 4 I Rh Rh Rh CO 2CO R substitution 1 substitution 2 electrochemical oxidation 2 P(OPh)3 O O R R P(OPh)3 O P(OPh)3 I I electrochemical oxidation 2 electrochemical oxidation 1 N chemical oxidation 1 and 2 CH3I PX3 O I CH3 R' P(OPh)3 O Rh Rh N RhIII CH3I + CO O R substitution 3 N CH3 R' chemical oxidation 3 N P(OPh)3 O R III I DFT and Electrochemical oxidation 1 Experimental parameters related to oxidation potential of [Rh(RCOCHCOR')(P(OPh)3)2] 1 oxidation potential (Epa) of Rh 2 kinetic rate constant (k2) of oxidative addition reaction Calculated parameter related to oxidation potential of [Rh(RCOCHCOR')(P(OPh)3)2] 3 energy of HOMO (EHOMO) 4 calculated NPA charge on Rh(P(OPh)3)2 Parameters used to describe electron donating power (RCOCHCOR’)5 group electronegativity (c) of R and R’ groups R' 6 Hammett values (meta) of R and R’ groups O 7 pKa of the b-diketone (RCOCH2COR’) O R Empirical relationship describing redox potential 8 Lever ligand parameter Eredox (vs. SHE) = SM X ΣEL + IM (ΣEL=sum of the values of the ligand EL parameter for all the ligands ) P(OPh)3 RhI P(OPh)3