Transcript Document

Chapter 1.
Three-Phase System
1
1.1: Review of Single-Phase System
The Sinusoidal voltage
v1(t) = Vm sin wt
i
v1
v2
Load
AC
generator
2
1.1: Review of Single-Phase System
The Sinusoidal voltage
v(t) = Vm sin wt
where
Vm = the amplitude of the sinusoid
w = the angular frequency in radian/s
t = time
v(t)
Vm




wt
-Vm
3
v(t)
Vm




t
-Vm
2
T
w
1
f 
T
w  2f
The angular frequency in radians per second
4
A more general expression for the sinusoid (as
shown in the figure):
v2(t) = Vm sin (wt + q)
where q is the phase
v(t)
Vm
q
V1 = Vm sin wt




wt
-Vm
V2 = Vm sin wt + q)
5
A sinusoid can be expressed in either sine or cosine form.
When comparing two sinusoids, it is expedient to express
both as either sine or cosine with positive amplitudes.
We can transform a sinusoid from sine to cosine form or
vice versa using this relationship:
sin (ωt ± 180o) = - sin ωt
cos (ωt ± 180o) = - cos ωt
sin (ωt ± 90o) = ± cos ωt
cos (ωt ± 90o) = + sin ωt
6
Sinusoids are easily expressed in terms of phasors.
A phasor is a complex number that represents the
amplitude and phase of a sinusoid.
v(t) = Vm cos (ωt + θ)
V  Vmq
Time domain
Phasor domain
Time domain
Phasor domain
Vm cos( wt  q )
Vm q
Vm sin( wt  q )
Vm q  90 o
I m cos( wt  q )
I m q
I m sin( wt  q )
I m q  90o
7
Time domain
v(t)
v2(t) = Vm sin (wt + q)
V1 = Vm sin wt
Vm
v1(t) = Vm sinwt

q



wt
-Vm
V2 = Vm sin wt + q)
Phasor domain
V2
θ
V1  Vm 0
or
V1  Vrms0
V2  Vmq
or
V2  Vrmsq
V1
8
1.1.1: Instantaneous and Average Power
The instantaneous power is the power at any instant
of time.
p(t) = v(t) i(t)
Where
v(t) = Vm cos (wt + qv)
i(t) = Im cos (wt + qi)
Using the trigonometric identity, gives
1
1
p( t )  Vm I m cos( q v  qi )  Vm I m cos( 2wt  q v  qi )
2
2
9
The average power is the average of the
instantaneous power over one period.
1
P
T
P

T
0
p (t ) dt
1
Vm I m cos( q v  q i )
2
p(t)
1
Vm I m
2
1
Vm I m cos( q v  q i )
2



t
10
The effective value is the root mean square (rms) of
the periodic signal.
The average power in terms of the rms values is
P  Vrms I rms cos( qv  qi )
Where
Vrms 
I rms 
Vm
2
Im
2
11
1.1.2: Apparent Power, Reactive Power and
Power Factor
The apparent power is the product of the rms values
of voltage and current.
S  Vrms I rms
The reactive power is a measure of the energy
exchange between the source and the load reactive
part.
Q  Vrms I rms sin( qv  qi )
12
The power factor is the cosine of the phase difference
between voltage and current.
P
Power factor   cos( qv  qi )
S
The complex power:  P  jQ
 Vrms I rms qv  qi
13
1.2: Three-Phase System
In a three phase system the source consists of three
sinusoidal voltages. For a balanced source, the three
sources have equal magnitudes and are phase
displaced from one another by 120 electrical degrees.
A three-phase system is superior economically and
advantage, and for an operating of view, to a singlephase system. In a balanced three phase system the
power delivered to the load is constant at all times,
whereas in a single-phase system the power pulsates
with time.
14
1.3: Generation of Three-Phase
Three separate windings or coils with terminals R-R’,
Y-Y’ and B-B’ are physically placed 120o apart
around the stator.
R
Stator
Y
R
B
B’
N
Y’
Rotor
Y
S
B
R’
15
V or v is generally represented a voltage, but
to differentiate the emf voltage of generator
from voltage drop in a circuit, it is convenient to
use e or E for induced (emf) voltage.
16
v(t)
vR

vY

vB
wt
The instantaneous e.m.f. generated in phase R, Y and B:
eR = EmR sin wt
eY = EmY sin (wt -120o)
eB = EmB sin (wt -240o) = EmBsin (wt +120o)
17
Three-phase
AC generator
IR
VR
ER
ZR
IN
EB
VB
EY
IY
VY
ZB
ZY
IB
Three-phase
18
Load
Phase voltage
The instantaneous e.m.f. generated in phase R, Y and B:
eR = EmR sin ωt
eY = EmY sin (ωt -120o)
eB = EmB sin (ωt -240o) = EmBsin (ωt +120o)
In phasor domain:
120o
ER = ERrms
0o
EY = EYrms
-120o
EB = EBrms
120o
0o
-120o
ERrms = EYrms = EBrms = Ep
Magnitude of phase voltage
19
Three-phase
AC generator
Line voltage
IR
ERY
ER
VR
ZR
IN
EB
VB
EY
IY
VY
ZB
ZY
IB
ERY = ER - EY
Three-phase
Load
Line voltage
ERY = Ep
0o - Ep
= EL
ERY
-EY
30o
= 1.732Ep
= √3 Ep
-120o
30o
30o
120o
0o
-120o
ERY = ER - EY
21
Three-phase
AC generator
Line voltage
IR
VR
ER
ZR
IN
EB
VB
EY
IY
IB
VY
ZB
ZY
EYB
EYB = EY - EB
Three-phase
Load
Line voltage
EYB = Ep
-120o - Ep
-90o
= 1.732Ep
= √3 Ep
= EL
120o
120o
0o
-90o
-90o
-120o
-EB
EYB = EY - EB
EYB
Three-phase
AC generator
Line voltage
IR
ER
EBR
VR
ZR
IN
EB
VB
EY
IY
VY
ZB
ZY
IB
EBR = EB - ER
Three-phase
Load
Line voltage
EBR = Ep
120o - Ep
= EL
EBR
120o
150o
= 1.732Ep
= √3 Ep
0o
0o
150o
150o
-ER
-120o
For star connected supply, EL= √3 Ep
EBR = EB - ER
25
Phase voltages
ER = Ep
0o
EY = Ep
-120o
EB = Ep
120o
It can be seen that the phase
voltage ER is reference.
120o
0o
Line voltages
-120o
ERY = EL
30o
EYB = EL
-90o
EBR = EL
150o
26
Phase voltages
ER = Ep
-30o
EY = Ep
-150o
EB = Ep
Or we can take the line voltage
ERY as reference.
90o
Line voltages
ERY = EL
0o
EYB = EL
-120o
EBR = EL
120o
27
Three-phase
AC generator
Delta connected Three-Phase supply
IR
ERY
VR
ZR
ER
EB
VB
EY
VY
ZB
IY
ZY
IB
ERY = ER = Ep
0o
Three-phase
Load
Three-phase
AC generator
Delta connected Three-Phase supply
IR
VR
ZR
ER
EB
EBR
VB
EY
ZB
IY
IB
VY
ZY
EYB
For delta connected supply, EL= Ep
Three-phase
Load
Connection in Three Phase System
4-wire system (neutral line with impedance)
3-wire system (no neutral line )
4-wire system (neutral line without impedance)
3-wire system (no neutral line ), delta connected load
Star-Connected Balanced Loads
a) 4-wire system b) 3-wire system
Delta-Connected Balanced Loads
a) 3-wire system
30
Three-phase
AC generator
4-wire system (neutral line with impedance)
IR
VR
ER
IN
ZN
EB
EY
ZR
VN
IY
VB
VY
ZB
ZY
IB
Voltage drop across neutral
impedance:
VN = INZN
1.1
Three-phase
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KCL at star point
IR
VR
ER
IN
ZN
EB
EY
ZR
VN
VB
VY
ZB
IY
ZY
IB
IR + IY + IB= IN
1.2
Three-phase
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KVL on R-phase loop
IR
VR
ER
IN
ZN
EB
EY
ZR
VN
IY
VB
VY
ZB
ZY
IB
Three-phase
33
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KVL on R-phase loop
IR
VR
ER
IN
ER – VR – VN = 0
ZR
ZN
VN
ER – IRZR – VN = 0
Thus
IR =
ER – VN
ZR
1.3
Three-phase
34
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KVL on Y-phase loop
IR
VR
ER
IN
ZN
EB
EY
ZR
VN
IY
VB
VY
ZB
ZY
IB
Three-phase
35
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KVL on Y-phase loop
EY – VY – VN = 0
Thus
IY =
EY – IYZY – VN = 0
IN
EY
EY – VN
1.4
ZY
ZN
VN
IY
VY
ZY
Three-phase
36
Load
Three-phase
AC generator
4-wire system (neutral line with impedance)
Applying KVL on B-phase loop
EB – VB – VN = 0
Thus
IB =
EB – IBZB – VN = 0
IN
EB – VN
1.5
ZB
ZN
EB
VN
VB
ZB
IB
Three-phase
37
Load
4-wire system (neutral line with impedance)
Substitute Eq. 1.2, Eq.1.3, Eq. 1.4 and Eq. 1.5 into
Eq. 1.1:
IR + IY + IB= IN
ER – VN
EY – VN
+
ZR
+
ZY
ZR
+
EY
ZY
+
EB
ZB
VN
=
ZB
ER – VN + EY – VN +
ZR ZR
ZY ZY
ER
EB – VN
= VN
ZN
EB – VN
VN
=
ZB ZB
1
ZN
+
ZN
1
ZR
+
1
ZY
+
1
ZB
38
4-wire system (neutral line with impedance)
ER
VN
+
ZR
ZR
+
ZY
+
ZN
+
EB
ZB
1.6
=
1
ER
EY
EY
ZY
+
1
+
ZR
EB
ZB
= VN
1
1
+
ZY
ZB
1
ZN
+
1
ZR
+
1
ZY
+
1
ZB
39
4-wire system (neutral line with impedance)
VN is the voltage drop across neutral line impedance
or the potential different between load star point and
supply star point of three-phase system.
ER
VN
+
ZR
EY
EB
+
ZY
ZB
1.6
=
1
ZN
+
1
ZR
+
1
ZY
+
1
ZB
We have to determine the value of VN in order to find the
values of currents and voltages of star connected loads of
40
three-phase system.
Example
IR
EL = 415 volt
ER
VR
ZR = 5 Ω
IN ZN =10 Ω
EB
EY
VN
IY
VB
ZY= 2 Ω
ZB = 10 Ω
IB
Find the line currents IR ,IY and IB. Also find
the neutral current IN.
Three-phase
Load
Three-phase
AC generator
3-wire system (no neutral line )
IR
VR
ER
IN
ZN
EB
EY
ZR
VN
IY
VB
VY
ZB
ZY
IB
Three-phase
Load
Three-phase
AC generator
3-wire system (no neutral line )
IR
VR
ER
ZR
VN
EB
VB
EY
VY
ZB
IY
ZY
IB
No neutral line = open circuit ,
ZN = ∞
Three-phase
43
Load
3-wire system (no neutral line )
ER
VN =
EY
+
ZR
1
ZN
EB
+
ZY
1
+
ZR
ZB
+
1
+
ZY
1.6
1
ZB
ZN = ∞
1
∞
=
0
44
3-wire system (no neutral line )
ER
VN =
ZR
+
EY
EB
+
ZY
1
ZR
ZB
+
1
ZY
+
1.7
1
ZB
45
Example
IR
EL = 415 volt
ER
EB
EY
VN
IY
VR
ZR = 5 Ω
VB
ZY= 2 Ω
ZB = 10 Ω
IB
Find the line currents IR ,IY and IB . Also find
the voltages VR, VY and VB.
Three-phase
Load
3-wire system (no neutral line ),delta connected load
Three-phase
AC generator
IR
VR
ER
EB
ZR
VB
EY
IY
VY
ZB
ZY
IB
Three-phase
Load
3-wire system (no neutral line ),delta connected load
Three-phase
AC generator
IR
Ir
ER
VBR
EB
Ib
EY
VRY
ZBR ZRY
ZYB
Iy
IY
IB
VYB
Three-phase
Load
3-wire system (no neutral line ),delta connected load
Three-phase
AC generator
IR
Ir
ERY =VRY
ER
EBR =VBR
EY
EB
VRY
VBR
ZBR ZRY
Ib
ZYB
Iy
IY
IB
EYB =VYB
VYB
Three-phase
Load
3-wire system (no neutral line ),delta connected load
Phase currents
Ir =
Iy =
Ib =
VRY
=
ERY
=
EL
ZRY
ZRY
ZRY
VYB
EYB
EL
=
=
ZYB
ZYB
ZYB
VBR
EBR
EL
ZBR
=
ZBR
=
30o
-90o
150o
ZBR
50
3-wire system (no neutral line ),delta connected load
Three-phase
AC generator
IR
Ir
Line currents
IR = Ir - Ib
E=B
EL
30o
ERY =VRY
ER
o
E
150
E
- BRL =VBR
EZ
Y BR
ZRY
=
ZYB
-90o
VBR
ZBR ZRY
Ib
ZYB
Iy
IY
IY = Iy - Ir
EL
VRY
-
EL
30EoYB =VYB
VYB
IB
ZRY
Three-phase
Load
3-wire system (no neutral line ),delta connected load
Three-phase
AC generator
IR
Ir
Line currents
IB =
E=B
Ib - Iy
EL
ZBR
ERY =VRY
ER
150o
o
E
-90
E
- BRL =VBR
EZ
Y YB
VRY
VBR
ZBR ZRY
Ib
ZYB
Iy
IY
EYB =VYB
VYB
IB
Three-phase
Load
Star to delta conversion
+ ZYZB + ZBZR
ZRY = ZRZY
ZB
ZR
ZBR
ZRY
+ ZYZB + ZBZR
ZYB = ZRZY
ZR
ZY
ZB
+ ZYZB + ZBZR
ZBR = ZRZY
ZY
ZYB
Example
Use star-delta conversion.
IR
EL = 415 volt
ER
EB
EY
VN
IY
VR
ZR = 5 Ω
VB
ZY= 2 Ω
ZB = 10 Ω
IB
Find the line currents IR ,IY and IB .
Three-phase
Load
Three-phase
AC generator
4-wire system (neutral line without impedance)
IR
VR
ER
IN
ZN = 0 Ω
EB
EY
ZR
VN
VB
IR
VY
ZB
ZY
IB
VN = INZN = IN(0) = 0 volt
Three-phase
55
Load
4-wire system (neutral line without impedance)
For 4-wire three-phase system, VN is equal to
0, therefore Eq. 1.3, Eq. 1.4, and Eq. 1.5
become,
IR =
IY =
IB =
ER – VN
ZR
EY – VN
1.3
1.4
ZY
EB – VN
1.5
ZB
56
Example
IR
EL = 415 volt
ER
VR
ZR = 5 Ω
IN
EB
EY
VN
IY
VB
ZY= 2 Ω
ZB = 10 Ω
IB
Find the line currents IR ,IY and IB . Also find
the neutral current IN.
Three-phase
Load
v(t)
vR

vY

vB
wt
The instantaneous e.m.f. generated in phase R, Y and B:
eR = EmR sin wt
eY = EmY sin (wt -120o)
eB = EmB sin (wt -240o) = EmBsin (wt +120o)
58
1.4: Phase sequences
RYB and RBY
VB
(a) RYB or positive sequence
VR  VR ( rms ) 0o
w
120o
120o
VY  VY ( rms )   120
o
VR
-120o
VB  VB ( rms )   240o
 VB ( rms ) 120o
VY
VR leads VY, which in turn leads VB.
This sequence is produced when the rotor rotates in
the counterclockwise direction.
59
(b) RBY or negative sequence
VR  VR ( rms ) 0o
VY
w
VB  VB ( rms )   120o
120o
120o
VR
-120o
VY  VY ( rms)   240o
 VY ( rms) 120o
VB
VR leads VB, which in turn leads VY.
This sequence is produced when the rotor rotates in
the clockwise direction.
60
1.5: Connection in Three Phase System
1.5.1: Star Connection
a) Three wire system
R
ZR
ZY
Z
B
Y
B
61
Star Connection
b) Four wire system
R
VRN
V BN
ZR
V YN
ZY
Z
B
Y
N
B
62
Wye connection of Load
R
R
2
Z
Z1
Y
Z1
Y
Load
Z3
B
B
N
N
Z2
Z3
Load
63
1.5.2: Delta Connection
R
R
Y
Y
B
B
64
Delta connection of load
R
Load
R
Zc
Z
c
Zb
Y
B
Za
Y
Zb
Za
B
Load
65
1.6: Balanced Load Connection in
3-Phase System
66
Example
Wye-Connected Balanced Loads
b) Three wire system
IR
EL = 415 volt
ER
EB
EY
VN
IY
VR
ZR = 20 Ω
ZY= 20 Ω
VB
ZB = 20 Ω
IB
Find the line currents IR ,IY and IB . Also find
the voltages VR, VY and VB.
Three-phase
67
Load
Wye-Connected Balanced Loads
b) Three wire system
VN = = 0 volt
VR = ER
VY = EY
VB = EB
68
Example
1.6.1: Wye-Connected Balanced Loads
a) Four wire system
IR
EL = 415 volt
ER
VR
ZR = 20 Ω
IN
EB
EY
VN
IY
ZY= 20 Ω
VB
ZB = 20 Ω
IB
Find the line currents IR ,IY and IB . Also find
the neutral current IN.
Three-phase
69
Load
1.6.1: Wye-Connected Balanced Loads
a) Four wire system
IR
R
IN  IR  IY  IB
Z1
VRN
IN
N
V YN
V BN
Z2
IY
Z
Y
B
IB
VRN  Vphasa 0
VYN  Vphasa   120
VBN  Vphasa 120
where Vphasa  VRN  VYN  VBN
3
For balanced load system,
IN = 0 and Z1 = Z2 = Z3
VRN 0 o
IR 
Z1
VYN   120o
IY 
Z2
VBN 120o
IB 
Z3
70
Wye-Connected Balanced Loads
b) Three wire system
IR
R
IR  IY  IB  0
Z1
VBR VRY
S
IY
Z2
Z
3
Y
VYB
B
IB
VRS  Vphasa 0
VYS  Vphasa   120
VBS  Vphasa   240
VRS 0 o
IR 
Z1
VYS   120o
IY 
Z2
VBS 120o
IB 
Z3
where Vphasa  VRS  VYS  VBS
71
1.6.2: Delta-Connected Balanced Loads
IR
Phase currents:
R
I YB
VYB   120o

Z2
I BR
VBR 120o

Z3

Z

VBR
I RY
Z
VRY
I BR
I RY
VRY 0 o

Z1
IY
Y
VYB
B
I YB
Z
IB
where I RY  I YB  I BR  I phasa
and
I R  I Y  I B  I line
Line currents:
I R  I RY  I BR
I Y  I YB  I RY
I B  I BR  I YB
72
1.7: Unbalanced Loads
73
1.7.1: Wye-Connected Unbalanced Loads
Four wire system
IR
IN  IR  IY  IB
R
Z1
VRN
For unbalanced load system,
IN  0 and Z1  Z2  Z3
IN
N
V YN
V BN
IY
Z2
Z
3
VRN 0 o
IR 
Z1
Y
B
IB
VRN  Vphasa 0
VYN  Vphasa   120
VBN  Vphasa 120
VYN   120o
IY 
Z2
VBN 120o
IB 
Z3
74
1.7.2: Delta-Connected Unbalanced Loads
Phase currents:
IR
I RY
VRY 0 o

Z1
I YB
VYB   120o

Z2
I BR
VBR 120o

Z3
R
I RY
VBR

Z

Z
VRY
I BR
IY
Y
VYB
I YB
Z
B
IB
Line currents:
VRN  Vphasa 0
I R  I RY  I BR
VYN  Vphasa   120
I Y  I YB  I RY
VBN  Vphasa 120
I B  I BR  I YB 75
1.8 Power in a Three Phase
System
76
Power Calculation
The three phase power is equal the sum of
the phase powers
P = PR + PY + PB
If the load is balanced:
P = 3 Pphase = 3 Vphase Iphase cos θ
77
1.8.1: Wye connection system:
I phase = I L and
VLL  3 V phase
Real Power, P = 3 Vphase Iphase cos θ
 3 VLL I L cos q Watt
Reactive power,
Q = 3 Vphase Iphase sin θ
 3 VLLI L sin q VAR
Apparent power,
S = 3 Vphase Iphase
 3 VLLI L VA
or S = P + jQ
78
1.8.2: Delta connection system
I L  3 I phase
VLL= Vphase
P = 3 Vphase Iphase cos θ
 3 VLL I L cos q Watt
79
1.9: Three phase power
measurement
80
Power measurement
In a four-wire system (3 phases and a
neutral) the real power is measured using
three single-phase watt-meters.
81
Three Phase Circuit
Four wire system,
Each phase measured separately
PA
IA
Phase A
VAN
Phase B
W
A
V
W
A
VBN
Phase C
PB
IB
V
PC
IC
W
A
VCN
V
Neutral (N)
82
watt-meter connection
W
Current coil (low impedance)
voltage coil (high impedance)
83
a) Four wire system
Example
WR
IR
ER
EL = 415 volt
IN
EB
EY
VR
WY
VN
ZR = 5
ZY = 10
VB
ZB = 20
30o Ω
90o
Ω
45o Ω
IY
IB
WB
Find the three-phase total power, PT.
Three-phase
Load
b) Three wire system
Example
WR
IR
ER
EL = 415 volt
VR
ZR = 5
EB
EY
WY
ZY = 10
VN
ZB = 20
30o Ω
90o
Ω
45o Ω
IY
IB
WB
Find the three-phase total power, PT.
Three-phase
Load
b) Three wire system
Example
WR
IR
ER
EL = 415 volt
EB
EY
WY
VN
VR
ZR = 5
VB
ZB = 20
ZY = 10
30o Ω
90o
Ω
45o Ω
IY
IB
WB
Find the three-phase total power, PT.
Three-phase
Load
Three Phase Circuit
Three wire system,
The three phase power is the sum of the two wattP
meters reading
I
Phase A
AB
A
A
VAB = VA - VB
W
V
Phase B
VCB = VC - VB
PT  PAB  PCB
IC
A
V
W
Phase C
PCB
87
PT  PAB  PCB
Proving:
The three phase power (3-wire system) is the
sum of the two watt-meters reading
IA
Phase A
Instantaneous power:
A
VAN
pA = v A i A
PA
W
V
Phase B
IB
A
VBN
pB = v B i B
Phase C
pC = v C i C
PB
W
V
IC
PC
A
VCN
W
V
Neutral (N)
pT = pA + pB + pC = vA iA + vB iB +vC iC
= vA iA + vB iB +vC iC = vA iA + vB (-iA -iC) +vCiC
88
Proving:
The three phase power (3-wire system) is the
sum of the two watt-meters reading
IA
Phase A
Instantaneous power:
pT = vA iA + vB (-iA –iC) +vCiC
PA
A IA
VAN
Phase B
PAB
W
A
V
W
IB
VAB = VA - VB
Phase A
A
PB
V
W
Phase B
= (vA – vB )iA + (vC – vB )iC
VBN
Phase C
VCB = VC - VB
= vAB iA + vCBiC
Neutral (N)
IC
A
V
IC
V
W
PC
A
W
VCN
V Phase C
PCB
pT = pAB + pCB
PT  PAB  PCB
89
Power measurement
In a four-wire system (3 phases and a
neutral) the real power is measured using
three single-phase watt-meters.
In a three-wire system (three phases
without neutral) the power is measured
using only two single phase watt-meters.
The watt-meters are supplied by the line
current and the line-to-line voltage.
90