スライド 1

Download Report

Transcript スライド 1

Odd frequency pairing in
superconducting heterostructures
Alexander Golubov
Twente University, The Netherlands
Y. Tanaka
Nagoya University, Japan
Y. Asano
Hokkaido University, Japan
Y. Tanuma
Akita University, Japan
Contents
(1)What is odd-frequency pairing
(2)Normal metal / Superconductor junctions
(3)Ferromagnet/Superconductor junctions
Conventional Classification of
Symmetry of Cooper pair
Spin-singlet Cooper pair
s-wave
Even Parity
d-wave Cuprate
BCS
Spin-triplet Cooper pair
p-wave
Odd Parity
3He
Sr2RuO4
Pair amplitude
(pair correlation)
Exchange of two electrons
Fermi-Dirac statistics
Pair amplitude
Exchange of time
Even-frequency pairing (conventional pairing)
Odd-frequency pairing
Odd-frequency pairing
Pauli principle
D(ω),D(w)
f(ω)
even-frequency
superconductivity
Symmetry of pair wave functions:
w
spin-singlet: s = odd
s-, d-wave
D(ω), f(ω)
odd-frequency
superconductivity
p-, f-wave
spin-triplet: s = even
w
p-, f-wave
s-, d-wave
Symmetry of the pair amplitude
+ symmetric, - anti-symmetric
Frequency
(time)
ESE
+(even)
Spin
Orbital
- (singlet) +(even)
Total
-
ETO
+(even)
+ (triplet)
-(odd)
-
OTE
-(odd)
+ (triplet)
+(even)
-
OSO
-(odd)
- (singlet) -(odd)
BCS
Cuprate
3He
Sr2RuO4
-
ESE (Even-frequency spin-singlet even-parity)
ETO (Even-frequency spin-triplet odd-parity)
OTE (Odd-frequency spin-triplet even-parity) Berezinskii
OSO (Odd-frequency spin-singlet odd-parity) Balatsky, Abrahams
Previous studies about oddfrequency pairing
Bulk state (Pair potential, Gap function)
Berezinskii (1974)
Balatsky Abrahams Schrieffer Scalapino(1992-1993)
Zachar Kievelson Emery (1996)
Coleman Mirranda Tsvelik (1997)
Vojta Dagotto (1999)
Fuseya Kohno Miyake (2003)
Junction (No pair potential)
Induced odd-frequency pair amplitude in ferromagnet
attached to spin-singlet s-wave superconductor
Bergeret, Efetov, Volkov, (2001)
Odd-frequency pairing state
• Odd-frequency pairing state is possible even if
we start from the conventional even-frequency
paring state:
Broken spin rotation symmetry or spatial
invariance symmetry can induce oddfrequency pairing state:
- ferromagnet/superconducor junctions
- non-uniform systems
Contents
(1)What is odd-frequency pairing
(2) Ballistic normal metal junctions
(3)Diffusive normal metal junctions
(4)Ferromagnet/Superconductor junctions
Ballistic junction
Ballistic
Normal metal
(semi-infinite)
Superconductor
(semi-infinite)
Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda
Phys. Rev. Lett. 99 037005 (2007)
M. Eschrig, T. Lofwander, Th. Champel, J.C. Cuevas and G. Schon
J. Low Temp. Phys 147 457(2007)
Eilenberger equation
(explicitly denote direction of motion)
Pair potential
Quasiparticle function
Pair amplitudes
Bulk state
ballistic
normal
metal
Form factor
Only
S
S
N
0
x
General properties(frequency)
Superconductor is conventional even-frequency one.
Even-frequency
(real)
bulk-component
Spatial change of the pair potential
Odd-frequency
(imaginary)
Interface-induced
component
Normal metal
spin-triplet p-wave
superconductor
Symmetry of the bulk pair potential is ETO
(low-transparent)
Pair potential
(high-transparent)
px-wave component of ETO pair amplitude
s-wave component of OTE pair amplitude
ETO (Even-frequency spin-triplet odd-parity)
OTE (Odd-frequency spin-triplet even-parity)
Y. Tanaka, et al PRL 99 037005 (2007)
Underlying physics
Near the interface, even and odd-parity pairing
states (pair amplitude) can mix due to the
breakdown of the translational symmetry.
Fermi-Dirac statistics
The interface-induced state (pair amplitude) should
be odd in frequency where the bulk pair potential
has an even -frequency component since there is no
spin flip at the interface.
4
Normalized DOS
Mid gap Andreev
resonant (bound) state
(MARS)
2
0
ー
0
D
1
Local density of state has a zero energy
peak.
(Sign change of the pair potential at the
interface)
+
ー
ー
Interface (surface)
–1
Tanaka Kashiwaya PRL 74 3451 (1995),
Rep. Prog. Phys. 63 1641 (2000)
Buchholz(1981) Hara Nagai(1986)
Hu(1994) Matsumoto Shiba(1995)
Ohashi Takada(1995)
Hatsugai and Ryu (2002)
Mid gap Andreev resonant (bound) state
Electron-like quasiparticle
Cooper pair
Hole-like quasiparticle
Odd-frequency Cooper pair
(Odd-frequency pair amplitude)
Odd-frequency pairing state in N/S junctions
(N finite length)
Bounds state are formed in the normal metal
Y. Tanaka, Y. Tanuma and A.A.Golubov, Phys. Rev. B 76, 054522 (2007)
Ratio of the pair amplitude in the N
region (odd/even)
At some energy, odd-frequency component can exceed
over even frequency one.
Odd-frequency pairing
Even-frequency pairing
Hidden odd-frequency component in the
s-wave superconductor junctions
Ratio of the pair amplitude at the N/S
interface and the bound state level
Bound states condition (Z=0)
(McMillan Thomas Rowell)
Odd-frequency pairing
Even-frequency pairing
Bound states are due to the generation of the odd-frequency
Cooper pair amplitude
Y. Tanaka, Y. Tanuma and A.A. Golubov, PRB 76 054522 (2007)
Symmetry of the Cooper pair (No spin flip)
Sign change
Bulk state
(MARS)
(1) ESE (s,dx2-y2 -wave)
(1)
•
•
•
•
Interface-induced symmetry
(subdominant component )
No
(2)
(3)
ESE (dxy-wave)
ETO (px-wave)
Yes
Yes
ESE + (OSO)
OSO +(ESE)
OTE + (ETO)
(4)
ETO (py-wave)
No
ETO + (OTE)
(2)
(3)
(4)
ESE (Even-frequency spin-singlet even-parity)
ETO (Even-frequency spin-triplet odd-parity)
OTE (Odd-frequency spin-triplet even-parity)
OSO (Odd-frequency spin-singlet odd-parity)
Phys. Rev. Lett. 99 037005 (2007)
Contents
(1)What is odd-frequency pairing
(2) Ballistic normal metal junctions
(3)Diffusive normal metal junctions
(4)Ferromagnet/Superconductor junctions
Impurity scattering effect
Tanaka and Golubov, PRL. 98, 037003 (2007)
Ballistic
Normal metal
Superconductor
Impurity scattering (isotropic)
Diffusive
Normal metal
(DN)
Superconductor
Only s-wave pair
amplitude exists
in DN
(1)ESE
(2)OTE
ESE (Even-frequency spin-singlet even-parity)
OSO (Odd-frequency spin-singlet odd-parity)
Usadel equation
Available for diffusive limit
Diffusive limit
Angular average
Diffusive normal metal region attached to superconductor
Even frequency spin singlet even parity
(ESE) pair potential
DN
S
Even frequency spin singlet
s-wave (ESE) pair is induced in DN.
ESE pair /ESE pair potential
Even frequency spin singlet even parity
(ESE) pair potential
Even frequency spin singelt s –wave
s-wave case

1
DN
S
s–wave
0
–0.3
0
D
0.3
Odd frequency spin triplet s-wave (OTE) pair is
induced in DN
Px-wave case
ー
+
Re f ( )
DN
Im f ( )
New type of proximity effect
Y.Tanaka, A.A.Golubov, Phys.Rev.Lett. 98, 037003 (2007)
Even frequency spin triplet odd parity (ETO)
pair potential
Px-wave case
Even frequency spin triplet p–wave
ー
2
+

DN
px
Py-wave case
py
1
+
ー
DN
(no proximity& no MARS)
0
–0.3
0
D
0.3
Summary of Proximity effect (diffusive normal metal)
Symmetry of the pair potential
Induced pair amplitude in DN
(1)
Even frequency spin singlet
even parity (ESE)
ESE
(2)
Even frequency spin triplet
odd parity (ETO)
OTE
(3)
Odd frequency spin triplet
even parity (OTE)
OTE
(4)
Odd frequency spin singlet
odd parity (OSO)
ESE
How to detect triplet superconductor
MARS (Mid gap Andreev resonance state) can penetrate into DN by
proximity effect only for triplet superconductor junctions
STS
ZEP
Diffusive normal
Metal (DN)
STS
MARS
Triplet superconductor
LDOS in DN has a zero
energy peak
No ZEP
MARS
Diffusive normal Singlet superconductor
Metal (DN)
LDOS in DN does not have
a zero energy peak
How to detect odd-frequency paring amplitude:
measuring electrical conductivity
Asano, Tanaka, Golubov, Kashiwaya, PRL 99, 067005 (2007)
Sr2RuO4
OTE (Odd-frequency
spin-triplet even-parity)
ESE (Even-frequency
spin-singlet even-parity)
Au:I+
Au:V+
Au:I-
Au:V-
Kashiwaya, Maeno 2007
OTE proximity
Zero energy peak
ESE proximity (conventional)
No Zero energy peak
Contents
(1)What is odd-frequency pairing
(2)Ballistic normal metal junctions
(3)Diffusive normal metal junctions
(4)Ferromagnet/Superconductor junctions
Odd-frequency pair amplitude (not pair
potential) is generated in ferromagnet
junctions
Odd frequency spin-triplet s-wave pair
spin-singlet s-wave pair
_
+
Ferromagnet
Superconductor
Bergeret, Efetov, Volkov, (2001)
Eschrig, Buzdin, Kadigrobov,Fominov, Radovic
Generation of the odd-frequency pair amplitude
in ferromagnet
Spin triplet Cooper pairs in SF systems
S
F
df
z
df
2ds
-

D(x) / 
F
S
z
x
x
triplet Josephson effect in SF multilayered system
with noncollinear ferromagnets and thin superconductors
singlet:
F
triplet:
x
D
h
<<
D
D
Josephson current in S/HM/S
Half metal : CrO2
Keizer et.al., Nature (2006)
Bergeret et. al., PRL(‘01),
Spin active interface
Kadigrobov et. al., Europhys Lett.(‘01)
Theory in the clean limit Eschrig et. al., PRL(‘03)
Lofwander and Eschrig, Nature Physics (2008)
Recursive GF
Furusaki, Physica B(‘92),
Asano, PRB(‘01)
Advantages
SNS, SFS, S/HM/S
NS
J   Ji
i 1
J 
J
2
- J
2
Parameters
Vex : exchange
VS : spin-flip
Y.Asano, Y. Tanaka, A.A.Golubov, Phys.Rev.Lett. 98, 107002 (2007)
Spin active interface
V σ  VSs 2
SFS, S/HM/S
J  J
self-averaging
f  f , f 0 , f3
f    f 
No sign change
odd-frequency pairs
SFS
f
f0
, f , f3
S/HM/S
f 
only
Odd-frequency pairs
Pairing function / fB
1.0
< f0 >
0.5
0.0
-0.5 < f >
-1.0
-0.5
0.0
wn / D0
0.5
1.0
Quasiparticle DOS in Half Metal
f0
S/HM/S
f , f , f3
f 
SFS
even-odd mix
only
pure odd
3
LDOS at j = 37 / n0
SNS
2
Zero Energy Peak
S/HM/S
can be detected
by tunneling spectroscopy
1
0
0.0
0.5
E / D
1.0
Conclusions
(1) Ubiquitous presence of the odd-frequency pair
PRL 99, 037005 (2007)
(2) Odd-frequency pair amplitude is enhanced in the presence
of the midgap Andreev resonant state (PRL 99, 037005 (2007)).
(3) Low energy Andreev bound states can be expressed in
terms of odd-frequency pairing (PRB 76 054522 (2007))
(4) The origin of the anomalous proximity effect in
DN/spin-triplet p-wave junction is the generation of the
odd-frequency pairing state.
(PRB 70, 012507 (2004), PRL 98 037003 (2007) , PRL 99 067005 (2007))
(4) Odd-frequency pairs carry supercurrent in S/HM/S
junctions (PRL 98, 107002 (2007))