Transcript PPT - Sauls
Superfluid 3He in Confined Geometries
Broken Symmetry, Excitations and Possible New Phases
Physics
James A. Sauls
Lake Michigan
Anton B. Vorontsov
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Superfluid 3He in Confined Geometry
❖ Introduction
‣
Bulk Phases of 3He - Symmetry
‣
Superfluid 3He Near Surfaces - Pair Breaking
❖ Kinks,
Domain Walls - Confined Fermions
❖ Chiral
Edge States in 3He-A - 2D limit
‣
Edge Currents and Angular Momentum of 3He-A
‣
Robustness: Non-Specular Boundary Conditions
❖ Surface
Excitation Spectrum - 3He-B
‣
Majorana Fermions
‣
Andreev Fermions
❖ Phase
Diagram for 3He Films
Superfluid‣ 3Translationally
He in Confined Geometries
Invariant
Phases
AWG - P-wave , RHUL
1.
Introduction to Superfluid 3He
Unconventional BCS Superfluid:
S=1 - Spin Triplet
L=1 - Orbital p-wave
Cooper Pair Amplitude
L=1
S=1
Inhomogeneous States:
- relative momentum (p)
- Center-of-Mass (R)
px
py
pz
9 complex amplitudes
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Bulk Phase Diagram of Superfluid 3He
A - phase (``axial’’)
Anderson-Morel
Nodal Quasiparticles
Chiral Axis: Lz = ℏ
Gapped
B - phaseFully
(``isotropic’’)
Balian-Werthamer
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Fully Gapped, TRI Superfluid with Spontaneously
generated Spin-Orbit
3
Superfluid
He-B
Coupling
‣ Balian & Werthamer (1963)
FS
Translational Invariance
Weak Nuclear Dipole Energy
violation:
Nuclear Spin Dynamics
Generator
Approximate particle-hole symmetry
Broken relative spin-orbit
symmetry
G. Moores
& JAS
Transverse Sound
Acoustic Faraday
Effect
A. Leggett
Y. Lee et al.
Nature 1999
Superfluid 3He in Confined Geometries
violation:
Possible SuperSolid
Phase
A.Vorontsov &
JAS
AWG - P-wave , RHUL
Superfluid 3He-P (``Planar phase’’)
Non-Chiral Axis
Nodal Quasiparticles
Degenerate with the Axial
State
2D TRI ``B-phase’’
Possible Ground State in Confined 3He
Films
Superfluid 3He in Confined Geometries
Strong-Coupling Fluctuations
Un-realized in Bulk 3He
AWG - P-wave , RHUL
Superfluid 3He-A (``Axial phase’’)
‣Anderson & Morel (1962)
Chirality: Lz = ℏ
Broken 2D Parity
Broken TSymmetry
Broken time-reversal symmetry
Spin-Mass Vortices
Ground state Orbital Angular
Momentum
Chiral Fermions
Broken 2D parity
Broken relative gauge-orbit symmetry
Broken relative spin-orbit symmetry
Superfluid 3He in Confined Geometries
Lz =(N/2)ℏ (Δ/Ef)p
p = 0,1,2 ?
Ans: Chiral Edge States and Edge
Currents
AWG - P-wave , RHUL
Chiral Superfluids
‣A-phase of 3He
Spin AFM
Anderson & Morel (PR,1962)
Orbital FM
✤Chiral Spin-Triplet Superconductivity
Sr2RuO4 ?
UPt3
tetragonal
hexagonal
?
strong spinorbit
coupling
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Dirac Fermions
Mass
Degenerate Vacuum
States:
Domain Wall
❖ Zero Energy Bound
State
Superfluid 3He in Confined Geometries
R. Jackiw and C. Rebbi, Phys. Rev. D
1976
AWG - P-wave , RHUL
Quasiparticle States Confined near Boundaries and
Interfaces
Toplogical defect (kink) - Jackiw,Rebbi (PRD 1976)
⟿ due to interface scattering
C.-R. Hu 1994, Buchholtz et al. 1995
|Δ| - Quantum Well
Particle-hole Interference
A. Andreev 1964
⇉
⇉
L
Δ ei2
Δ ei1
L grows - more states
enter from continuum
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Andreev States and Edge Currents in d-wave SCs
Andreev Surface States
d-wave near pairbreaking surface
ZEBS
Walter et al PRL ’98
Burkhart, Rainer & JAS
Surface states
Paramagnetic Meissner current
Anomalous edge
currents
Doppler Splitting of the
ZEBS
Large N(0) ⟿ Broken Time-reversal
Edge currents
Surface d+i s
Superconductivity
Tunnel Splitting from dI/dV Covington et al PRL ’97
Sub-dominant pairing: d+is
Fogelström,Rainer & JAS PRL’97
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Zero Modes, Sub-Gap States & Bound States in ...
Josephson Point
Contacts
Vortex Core Excitations
Δe+iφ
Δe+iφ/2
Δe-iφ/2
φ
Edge States of dx2-y2
Superconductors
Sub-Gap States in Superfluid 3He
Films
Specular
[110]
Diffuse
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Chiral Edge States in 3He-A
l - parallel to the edge edge currents
‣Chiral Edge State
DipoleLocked
Specular - no surface bound
states
- no pairbreaking
Diffuse - gapless band
- surface pairbreaking
- Weyl Fermion
G. E. Volovik
M. Stone & R. Roy
Skew Scatterng
‣Majorana Fermion at
Chiral p-wave
2D Chiral p-wave
TRI p-wave
Superfluid 3He in Confined Geometries
N
AWG - P-wave , RHUL
Molecular BEC
Singlet S-wave Condensates
``Scalar BEC’’
Triplet P-wave Condensates
``Chiral P-wave molecular BEC’’
⟿
Intrinsic Angular Momentum Density
Superfluid 3He in Confined Geometries
Ground State Angular Momentum
AWG - P-wave , RHUL
Molecular BEC vs. BCS Pairing
✤Loosely Bound Cooper Pairs:ξ ≫ a
✤Overlapping Pairs ⟿ Internal
Exchange
ξ
✤Cancellation of Orbital Currents?
Superfluid 3He in Confined Geometries
⟿
AWG - P-wave , RHUL
Molecular BEC vs BCS Condensation
✤Momentum Space: Pair Correlations on the Fermi Shell
Fermi
Sea
# of pair-correlated Fermions
✤Intrinsic Angular Momentum Density in the BCS limit
... vs ...BEC limit
A. J. Leggett, RMP 1975, M. Cross JLTP 1975 & G. Volovik & V. Mineev JETP 1976
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Angular Momentum Paradox
✤Integrated Angular Momentum Density in the
... vs ...BEC limits
BCS
~10-6
z
P.W. Anderson and P. Morel 1962 & M. Cross 1975, A. Leggett RMP 1975
✤Real Space Formulation in Cylindrical Geometries
✤McClure-Takagi Result:
M. McClure, S. Takagi, PRL (1979)
For any cylindrically symmetric chiral texture
and pair wave function that vanishes on the
boundary:
independent of (a /ξ)!
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
McClure-Takagi gives the correct answer:
but ...
so ...
Currents are on the
boundary
G. E. Volovik
V. P. Mineev
M. Ishikawa
P. Muzikar
D. Mermin
T. Kita
M. Stone
A. Garg
R. Roy
...
M. Stone & R. Roy, PRB 2006
J. A. S., PRB 2011
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
2D Chiral A-phase with
Bulk Solution
⟿
Propagators for States Near an Edge
Bulk spectrum
Superfluid 3He in Confined Geometries
Bound State Pole
AWG - P-wave , RHUL
Surface
States
➡
➡
Chiral Edge States
unoccupied
Surface Confinement ...
occupied
a≪
≪L
Surface Current
Pair of Time-Reversed Edge States
Superfluid 3He in Confined Geometries
Asymmetry in the Occupation
AWG - P-wave , RHUL
Local Spectral Density
Pair Time-reversed Trajectories ⟿ Spectral Current Density
in
out
p’
Asymmetry
Exact in
Cancellation
the Occupation
x = 0.5 ξΔ
out
p
_’ α
in
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Bound-State Current & Angular Momentum
z
x
r
R
Mass Current
✤Galilean
✤Number
Invariance:
of Fermions:
⨉ 2 Too Big vs. MT
Superfluid 3He in Confined Geometries
Continuum States
contribute to the Edge
Currents
M. Stone & R. Roy PRB 2006
J.A.S. PRB 2011
AWG - P-wave , RHUL
Continuum Spectral Current
Resonance Effects
T=0
ξ
C2
+iΔ
C1
CR
-iΔ
Superfluid 3He in Confined Geometries
MT !!
AWG - P-wave , RHUL
Finite Temperature
⨯
⨯
C2 ⨯
⨯
Matsubara Representation
ξ
✤
+iΔ
C1
CR
T. Kita ``conjecture’’
J. Phys. Soc. Jpn. 67 (1998) pp. 216-224
3D Mesoscale (R≃ 2ξ)
Numerical BdG
?
Yz(T) = 1- c T2
ρs|| (T)
Lz(T)
ρs⊥ (T)
Lz(T) is ``soft’’ (2D or 3D) due to thermal excitation of Excited Edge
States
ρs|| (T) is ``soft’’ (3D) due to thermal excitation of Nodal
QPs
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Robustness of the Chiral Edge
States
Specular Reflection
out
➡
in
Facetted Surface
Chiral Edge States
No Chiral Currents
p
_p
out
in
Retro Reflection
Chirality Invisible!
Tiny Angular Momentum
Superfluid 3He in Confined Geometries
!!
AWG - P-wave , RHUL
Edge Currents in a Toroidal Geometry
R1, R2, (R1 - R2) ⋙ ξΔ
x
J2
J1
Sheet Current
Volume
Specular Edge
Angular Momentum
Counter-Propagating Currents
MT Result
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
!!
Non-Extensive Scaling of Lz
Sheet Current - Non-Specular Edge
J2
J1
Non-Specular Scattering
R1, R2, (R1 - R2) ⋙ ξΔ
Fraction of Forward Scattering Trajectories
Incomplete Screening of Counter-Propagating Currents
Lz ≉ V
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Conclusions
‣Topology and Non-specular Scattering ⟿ Lz is Non-Extensive:
Lz >> (N/2)ℏ or Lz << - (N/2)ℏ ⟿ Direct Evidence of Edge Currents
‣Detailed models of surface scattering <-> Edge Currents
‣Gyroscopic Dynamics of Toroidal Disks of 3He-A
‣A.C. rotational dynamics of Edge States and Edge currents
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
2.
New States of
3He
in Confined Geometry
Multi-component Order Parameter with Broken
Spin- Orbital and Gauge Symmetries.
A & B are Topological Superfluids
↳ Low-Energy Topological Surface/Interface
States
Chiral p-wave
Stripe Phase
TRISuperSolid
p-wave
N
↳ Confinement: Strongly deformed Order
Parameter
↳ low energy transport & thermodynamics
↳ phase transitions
➡ D≈10ξ0 Interactions of Surface & Interface States
↳ new superfluid phases in confined geometries
S=1
Superfluid 3He in Confined Geometries
L=1
AWG - P-wave , RHUL
Superfluid 3He-B near a wall
Pair Breaking & Pair Enhancement
2D Translationally invariant B-planar state
s
Specular
Trajectories
Specular
Superfluid 3He in Confined Geometries
Diffuse
AWG - P-wave , RHUL
Surface Fermionic Spectrum of
Specular Scattering
Non-Specular
Scattering
3He-B
ϴ
ϴ
is
conserved
specular
‣Majorana Fermion at
‣Dispersion:
‣Continuum Edge
disperses
3He in Confined Geometries
Superfluid
is not conserved
diffuse
‣Spectral Wt.: N(0)≠0 for all
‣New Andreev Bound States
‣Broad Low-energy Band
AWG - P-wave , RHUL
4. Edge Spectrum in the Film
‣ QP spectroscopy:
‣ Ballistic Emmitters
‣ Momentum-resolved Detectors
‣Longitudinal and Transverse Acoustic
Impedance Spectroscopy
‣Transverse Acoustic
Impedance Spectroscopy
R. Nomura et al. PRL 2009
‣
Wall:
Angle-resolved
Superfluid 3He in Confined Geometries
FS averaged
AWG - P-wave , RHUL
Translationally invariant phases of
3He
films
deformed bulk B- P- & A- phases
confinement in z - invariant in xy
3He-B-planar
A & P phases are
degenerate
Quantum Critial Point
Re-entrance or
Inhomogeneous
Phase?
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Crystalline Phase of Superfluid
‣ Spontaneously Broken Translation
film
3He
A. Vorontsov & JAS, PRL 2007 & Review
Symmetry in the 2012
x-y plane of the
‣ new OP components
small
‣ Dc2 - Single-Q Mode Instability
‣2nd order
Superfluid 3He in Confined Geometries
‣ Dc1 - Domain Walls Proliferation
‣Degenerate Vacua
AWG - P-wave , RHUL
Mechanism at Dc1 = Domain Wall Proliferation
Surface - Domain Wall
Interaction
“perpendicular DW”
“parallel DW”
Condensaton Energy
Condensation Energy
loss to surface
loss to Andreev states
states
Net Energy gain from a domain
wall
Perpendicular domain
‣Different ``healing
wall
for ⊥ and ||
costs less enegy/length lengths’’
components
than
‣ξ⊥ = √3ξ||
3
Superfluid He in Confined Geometriesa Parallel domain wall AWG - P-wave , RHUL
Spontaneous Currents in d-wave films
SC - Normal transition in films
A. Vorontsov,
PRL ’09
Inhomogeneous State: New
structure of the order parameter !
Free Energy gain from paramagnetic edge states
undergoing spontaneous TRS breaking
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
TRI Superfluid Planar-Stripe transition
Order Parameter Equation - Mode-Instability - Dc2
↳ n=0 - Broken symmetry “Vacuum” - Planar
↳ n=1 - new state (perturbation - linearized)
Coupling of Δ with Δ*
in the presence of non-trivial
“vacuum”
azx ~ 0.6 azz
Non-trivial “vacuum”
TRI
Superfluid 3He in Confined Geometries
➡Couples q and -q at the instability
AWG - P-wave , RHUL
4. Edge & Domain Wall Fermions in the Film
spectral weight
transfer
to lower energy
C3 ⇒ C1
spectral weight
transfer
to higher energy
E3 ⇒ E1
Azz
‣
Wall:
Angle-resolved
FS averaged
1 2
3
Center
Edge
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Angular resolved DOS in Films
C1
Andreev States
near continuum
C3
spectral weight
transfer
to lower energy
Azz
E1
1
Edg
e
Cente
3
r
Continuum
Tomasch
Low Energy States
E3
spectral weight
transfer
to higher energy
‣ QP spectroscopy: Ballistic Emmitters and Momentum-resolved
Detectors
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Induced DLRO ~ Density Modulation
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
OP and Density Wave in the Stripe Phase
OP Domain Wall
domain wall
variations in the film δn/n ~ 10-5
Azz
δn / n0
Axx
‣
Possible
Detection:
Light
Scattering
by density fluctuations?
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Superfluid film formation
‣ Competition: gravity vs. Van der Waals attractions of atoms to the
substrate or wall
‣ Non-uniform film surface: surface tension & density modulation
‣ Affects surface waves as well (third sound, etc)
chemical potential per particle
hydrostatic equlibrium
Superfluid 3He in Confined Geometries
density = (n0 m) ~ 81.5 kg/m3
surface tension σ ~ 0.156 mN/m
mass of 3He atom ~ 5 .10 -27 kg
vdW constant α ~ 10 .10-9 m4/3
see e.g. Steel, Harrison et al
JLTP 95, 1994
“Film flow on a round rim
beaker”
AWG - P-wave , RHUL
Crystalline Phase Film thickness variations
D ~ 10 ξ0 = 750 nm
‣
‣
average density
variations ~10-5
energy scales
VdW / gravity
film height driven by density fluctuations and α(n) dependence
‣
Surface tension /
gravity
‣
Dominates at
D ~ 10 ξ0
‣
Overall change in film thickness
ζ~0.1 Å Possible Capacitive Detection?
A. Schechter et al., Nature 396, 554 (1998).
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Summary
Crystalline Superfluid Phases
‣ Confinement ⟷ Surface States
‣ Majorana & Andreev States
‣ Interactions Between Surface States
Momentum-Resolved Fermion
Spectrum
‣ Broken Translational Symmetry
‣ Density Wave ⟶ ``SuperSolid’’
‣ Particle-hole asymmetry:
✓ variations of the film height
✓ tension dominates at D ~ 10 ξ0
‣Possible Detection:
✓ Momentum Resolved QP spectroscopy
✓Capacitance detection of height
fluctuations
✓Optical detection of density fluctuations (?)
✓NMR and Mass/Heat Transport
Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
Spin Triplet Pairing in UPt3
C
C. Choi & JAS, PRL (1991)
H [kOe]
Anisotropic Pauli
limiting
B. Shivaram et al. PRL (1986)
T [mK]
pair breaking
=
No pair breaking
➡
E2u Spin-Triplet, w/ strong Spin-Orbit Coupling Superfluid 3He in Confined Geometries
AWG - P-wave , RHUL
return
C
L. Gorkov (1987)
Unconventional Pairing in UPt3
C. Choi & JAS, PRL (1991)
J. A. Sauls, Adv. Phys. 43, 113 (1994).
H-T phase diagram - Tetracritical point - E2u
Anisotropic Pauli limiting - S=1
S. Adenwalla et al. PRL (1990)
NFL
C
J. Kycia et al., PRB (1998)
B
A
B. Shivaram et al. PRL (1986)
pair breaking
No pair breaking
Weak Symmetry Breaking - AFM order
D. Hess, et al., J. Phys.: Cond. Mat. 1, 8135 (1989).
➡ Spin-Triplet, E2u, w/ strong Spin-Orbit Coupling
R. A. Fisher et al., Phys. Rev. Lett. 1989.
M. Graf, S.K. Yip & JAS, PRB (1996)
Cv/T
✓Heat Capacity Anomalies
✓Anisotropy Transverse Sound
✓Anistropic Thermal Conductivity
➡ E2u orbital symmetry
Realignment of the flux-line lattice in
UPt3
Andrew Huxley et al. Nature (2000).
➡ E2u orbital symmetry
T. Champel & V. Mineev (2001)
T/Tc
B. Ellman et al.., Phys. Rev. B 54 (1996)
Superfluid
3He
B. Lussier et al.., Phys. Rev. B 53 (1996)
in Confined Geometries
AWG - P-wave , RHUL
return
return