CPT-symmetry, supersymmetry, and zero
Download
Report
Transcript CPT-symmetry, supersymmetry, and zero
CPT-symmetry, supersymmetry, and
zero-mode in generalized Fu-Kane
systems
Chi-Ken Lu
Physics Department,
Simon Fraser University,
Canada
Acknowledgement
Collaboration with Prof. Igor Herbut, Simon
Fraser University
Supported by National Science of Council,
Taiwan and NSERC, Canada
Special thanks to Prof. Sungkit Yip,
Academia Sinica
Contents of talk
Motivation: Majorana fermion --- A half fermion
Realization of Majorana fermion in superconducting system:
Studies of zero-modes.
Pairing between Dirac fermions on TI surface: Zero-mode
inside a vortex of unconventional symmetry
Full vortex bound spectrum in Fu-Kane vortex Hamiltonian:
Hidden SU(2) symmetry and supersymmetry
Realization of two-Fermi-velocity graphene in optical lattice:
Hidden SO(3)XSO(3) symmetry of 4-site hopping Hamiltonian.
Conclusion
Ordinary fermion statistics
1
{c , c1} 1 {c , c2} {c1, c2} 0
1
1
C C1
0
C C 0 C C C C
Occupation is integer
Pauli exclusion principle
1
1
1
1
2
2
1
Majorana fermion statistics
1
1
Definition of Majorana fermion
1
1 1
1 1
{ , 1} 1 1 1 12
1
{ , } 0
2
Occupation of Half?
Exchange statistics still intact
Re-construction of ordinary fermion
from Majorana fermion
1 i 2
2
,
{, } 1
0
Distinction from Majorana fermion
1 i 2
2
Restore an ordinary fermion
from two Majorana fermions
An ordinary fermion out of two
separated Majorana fermions
Two vortices: Degenerate ground-state
manifold and unconventional statistics
|G>
T
1
2
Ψ+|G>
1 i 2
2
Four vortices: Emergence of nonAbelian statistics
G
1
G
2
G
1
2
G
N vortices: Braiding group in the
Hilbert space of dimension 2^{N/2}
Zero-mode in condensed matter
system: Rise of topology
1D case: Peierl instability in polyacetylene.
2D version of Peierls instability: Vortex
pattern of bond distortion in graphene.
2D/3D topological superconductors: Edge
Andreev states and vortex zero-modes.
2D gapped Dirac fermion systems: Proximityindeuced superconducting TI surface
Domain wall configuration
Zero-mode soliton
SSH’s continuum limit
component on A sublattice
component on B sublattice
Nontrivial topology and zero-mode
~tanh(x)
H [k 3 ( x) 1 ]
{H , 2 } 0
2 E E
2 0 0
Beff s
3
1
1 (S 1 ) Z
2D generalization of
Peierl instability
Half-vortex in p+ip superconductors
( R, k ) e
i ( )
d ( ) (i 2 )
Topological interpretation of BdG
Hamiltonian of p+ip SC
H k (c , ck ) ( k ) 3 (k k ) B s
k
μ>0
ky
kx
μ<0
full S2
2x2 second order diff. eq
Supposedly, there are 4
indep. sol.’s
u
v
e component
h component
can be rotated into 3th component
2 of the 4 sol’s are decaying ones
u-iv=0
from 2 of the 4
sol’s are identically
zero
Discrete symmetry from
Hamiltonian’s algebraic structure
The beauty of Clifford
and su(2) algebras
Hermitian matrix representation of
Clifford algebra
3
1
0
0
1
iI 2
0
1 0
0
, 2
, 3
3
0 1
I2
iI 2
2
, 2
0
0
0
2
I2
0
real
imaginary
{ i , j } { i , j } 2 ij I 4
{ i , j } 0
3 1 2 1 2
From Dirac equation to Klein-Gordon
equation: Square!
H k x1 k y 2 m1
H (k m ) I 4
2
2
2
Homogeneous massive
Dirac Hamiltonian.
m=0 can correspond to
graphene case.
4 components from
valley and sublattice
degrees of freedom.
Imposing physical meaning to these
Dirac matrices: context of
superconducting surface of TI
Breaking of spin-rotation symmetry
in the normal state
{1 , 2 , i1 2 }
represents the generator of spin
rotation in xy plane
Real and imaginary part of SC
order parameter
{1 , 2 , i1 2 }
Represents the U(1) phase
generator
CPT from Dirac Hamiltonian with a
mass-vortex
H kx1 k y2 m(r )[1 cos 2 sin ]
Chiral symmetry operator
Anti-unitary Time-reversal operator
{H , 3} 0, [ H , K ] 0
{H , 3 K} 0
Particle-hole symmetry operator
Jackiw Rossi NPB 1981
n zero-modes for vortex
of winding number n
Generalized Fu-Kane system: JackiwRossi-Dirac Hamiltonian
Real/imaginary s-wave SC order parameters
azimuthal angle around
vortex center
H kx1 k y2 h(i12 ) m(r)[1 cos 2 sin ] (i12 )
Zeeman field along z
chemical potential
spin-momentum fixed kinetic energy
Broken CT, unbroken P
H (k x A1i1 2 )1 (k y A2i1 2 ) 2
m(r )[1 cos 2 sin ] h(i1 2 ) (i1 2 )
T
C
{H 0 , 3} 0, [ H 0 , K ] 0
{H 0 , 3 K} 0
P
i1 2
i1 2
[
, 3 ] 0,{
, K} 0
i1 2
i1 2
i1 2
{
, 3 K} 0
i1 2
Zero-mode in generalized Fu-Kane
system with unconventional pairing
symmetry
Spectrum parity and
topology of order
parameter
Arxiv:1105.0229
Pairing symmetry on helicity-based
band
1 2
h
k z k
2m
Parity broken
α≠0
Metallic surface of TI
1
0
m
Mixed-parity SC state of momentumspin helical state
h vF n
ΔΔ+
P-wave
M I 2 vF n
S-wave
Topology associated with s-wave
singlet and p-wave triplet order
parameters
Trivial superconductor
Nontrivial Z2 superconductor
k
p-wave limit
s-wave limit
k
( pF ) ( pF )
( pF ) ( pF )
pF pF
pF pF
( pF ) ( pF ) 0
pF pF
( pF ) ( pF ) 0
pF pF
-k
-k
LuYip PRB 2008 2009 2010
Sato Fujimoto 2008 Yip JLTP 2009
Pairing symmetry and spectrum in
uniform state on TI surface
gapped
gapless
gapped
s-wave:
M I 2
p-wave 2
p-wave 1:
M n
M n
Uniform state spectrum for mixedparity symmetry
gapped
Localized bound state inside a single
vortex
Δ(r)
ξ
r
Solving ODE for zero-mode
s-wave case
Orbital coupling
To magnetic field
Lu Herbut PRB 2010
μ≠0 and gapped
Winding number odd:
1 zero-mode
Winding number even:
0 zero-mode
See also Fukui PRB 2010
Zeeman coupling
Triplet p-wave gap and zero-mode
p-wave case
h2>μ2
Zero-mode becomes un-normalizable
when chemical potential μ is zero.
p-wave sc op
Zero-mode wave function and
spectrum parity
3 K 0 0
s-wave case
3 K 0 sgn() 0
p-wave case
Mixed-parity gap and zero-mode: it
exists, but the spectrum parity varies
as…
ODE for the zero-mode
Two-gap SC
+
+
smoothly
connected
at Fermi surface
+
-
Spectrum-reflection parity of zeromode in different pairing symmetry
Δ+>0
3 K 0 0
p-wave like
s-wave like
Δ+
Δ-
Accidental (super)-symmetry
inside a infinitely-large vortex
Degenerate Dirac
vortex bound states
Hidden SU(2) and super-symmetry out
of Jackiw-Rossi-Dirac Hamiltonian
Δ(r)
Seradjeh NPB 2008
Teo Kane PRL 2010
r
A simple but non-trivial Hamiltonian
appears
H kx1 k y2 x1 y2
Boson representation of (x,k)
Fermion representation of matrix
representation of Clifford algebra
SUSY form of vortex Hamiltonian and
its simplicity in obtaining eigenvalues
Herbut Lu PRB 2011
E N
N N f Nb
f1
f2
b1
b2
Degeneracy calculation: Fermionboson mixed harmonic oscillators
N N f Nb
b
b
b
N f 0,1,2
N b N , N 1, N 2
Degeneracy =
f
b
1
2
( N 1) 2 N N 1
2N
2
Accidental su(2) symmetry: Label by
angular momentum
H kx1 k y2 x1 y2
co-rotation
y
α2
J 3 L3 S3
β2
β1
α1
( xk y ykx ) i(1 2 1 2 )
1
2
2
a1 a1 a2 a2 b1 b1 b2 b2
x
An obvious constant of
motion
[H,J3]=[H,J2]=[H,J1]=0
Accidental generators
Resultant degeneracy from two values
of j
J a1
1
2
a1 1
a 2 b1
a2
2
s=0,1/2
b1
b
b2
2
l=0,1/2,1,3/2,….
Degeneracy pattern
Lenz vector operator
J+,J-,J3
Wavefunction of vortex bound states
b
b
b
b
b
1
b
±
2
b
b
f
b
1
b
f
f
1
2
2
b
b
b
E, j , m
±
b
b
f
b
1
2
E, j , m
Fermion representation and chiral
symmetry
b
b
chiral-even
1 2 1 2
b
b
{, } {, } 0
b
b
1
{, a1, 2 } 0
,
2
b
b
f
f
b
[, b1, 2 ] 0
chiral-odd
b
b
f
b
1
2
2
1
b
,
b
b
b
f
1
2
Accidental super-symmetry generators:
Super-symmetric representation of
quaternion algebra
1 i, j , k
Lu Herbut JPhysA 2011
I 2 iI 2 , i x , i y , i z
H H , Ax , Ay , Az
2
Algebraic approach to find remaining
square roots of H2
1 1
2 2
1 1
2 2
H a a a a b b b b
2
i
i
i
i
[H , a ] a ,[H , b ] b
2
i
2
i
A U ij (a b j b a j )
[ A2 , X ] { A, [ A, X ]} [ A,{ A, X }]
U I 2 A H
2
2
2
The desired operators do the job.
Super-symmetry algebra
Connection between spectrum and
degeneracy
j , j
j ,( j 1)
j , j 1
j , j
can be shown vanishing
Chemical potential and Zeeman field
Perturbed spectrum
so(3)xso(3) algebraic structure
within 4x4 Hermitian matrices
Two-velocity Weyl
fermions in optical
lattice
Two-velocity Weyl fermions on optical
lattice
Hidden so(3)xso(3) algebra from twovelocity Weyl fermion model
|u|
|v|
Chiral-block Hamiltonian
HW k (i1 2 ) k (i1 2 )
i1 2 i1 2
i1 2 i1 2
(1 )k
(1 )k
2
2
Ψ
Π
1 2 1 2
Conclusions and prospects
Clifford algebra and su(2) algebra help gain insight
into hidden symmetry
Zero-modes of Fu-Kane Hamiltonian survive when
gap in uniform state is not closed
Ordinary fermion representation of Gamma matrices
and super-symmetric form of Fu-Kane Hamiltonian
Linear dispersion and lessons from high-energy
physics: Zoo of mass in condensed matter physics
Dirac bosons: One-way propagation EM mode at the
edge of photonic crystal