Solid-State Hardware Review
Download
Report
Transcript Solid-State Hardware Review
Solid State Hardware Overview
Quantum Technologies:
Review of State-of-the-Art in
Hardware (Solid-State)
Gavin W Morley, Physics Department,
University of Warwick
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Quantum Technologies:
Review of State-of-the-Art in
Hardware (Solid-State)
Gavin W Morley, Physics Department,
University of Warwick
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Solid-State Hardware Overview
• Electron and Nuclear Spins
– Atomic dopants
• Donors in silicon
• NV- colour centres in diamond
• Others (eg SiC)
– Quantum Dots
• Gate-defined
• Self-assembled
• Coherent Superconducting Circuits
– Quantum computing
• Single microwave photons
– Quantum annealing
• Hybrids of these
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Solid-State Hardware Overview
• Electron and Nuclear Spins
– Atomic dopants
• Donors in silicon
• NV- colour centres in diamond
• Others (eg SiC)
– Quantum Dots
• Gate-defined
• Self-assembled
• Coherent Superconducting Circuits
– Quantum computing
• Single microwave photons
– Quantum annealing
• Hybrids of these
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Electron and Nuclear Spins
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Electron and Nuclear Spins
- Magnetic resonance
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Pulsed Electron Spin Resonance
at 110 – 336 GHz
GW Morley, L-C Brunel & J van Tol, Rev Sci Instrum 79, 064703 (2008)
J van Tol, L-C Brunel & R J Wylde, Rev Sci Instrum 76, 074101 (2005)
[1] GW Morley et al., PRL 101 (2008)
[2] S Takahashi et al., PRL 101 (2008)
[3] DR McCamey et al., Worldwide patent
WO/2009/155563 (2009)
[4] DR McCamey et al., PRL 102 (2009)
[5] S Takahashi et al., PRL 102 (2009)
[6] DR McCamey et al., Science 330 (2010)
[7] GW Morley et al., Nat Materials 9 (2010)
[8] S Takahashi et al., Nature 476 (2011)
[9] KY Choi et al., PRL 108, 067206 (2012)
[10] CC Lo et al., PRL 110 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
400 GHz Electron Spin Resonance
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Donors in silicon
Reviews:
DD Awschalom et al., Science
339, 1174 (2013)
F. A. Zwanenburg et al.,
Rev. Mod. Phys. 85, 961 (2013)
Image by Manuel Vögtli
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Spin coherence of donors in silicon
Bulk ensemble samples:
Nuclear T2 = 3 hours
K Saeedi et al., Science 342, 830
(2013)
Electron T2 > 1 second
AM Tyryshkin et al., Nature
Materials 11, 143 (2012)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Readout of donor spins in silicon
A Morello et al., Nature 467,
687 (2010)
JJ Pla et al., Nature 489, 541
(2012)
JJ Pla et al., Nature 496, 334
(2013)
Nuclear T2 = 60 ms
Electron T2 > 0.2 ms
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Atomic-scale fabrication in silicon
JL O’Brien et al., PRB
64, 161401 (2001)
SR Schofield et al., PRL
91, 136104 (2003)
M Fuechsle et al., Nat Nano
7, 242 (2012)
B Weber et al., Science
335, 64 (2012)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Bismuth qubits in silicon
T Sekiguchi et al., PRL 104, 137402 (2010)
GW Morley et al., Nature Materials 9, 725 (2010)
RE George et al., PRL 105, 067601 (2010)
GW Morley et al., Nature Materials 12, 103 (2013)
G Wolfowicz et al., Nature Nano 8, 561 (2013)
Image by Manuel Vögtli
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Colour centres in Diamond
Nitrogen-vacancy centre (NV-)
J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Coherence of NV- in Diamond
Single spin at room temperature:
Nuclear T2 > 1 second
PC Maurer et al., Science
336, 1283 (2012)
Electron T2 > 2 ms
G Balasubramanian et al.,
Nature Materials 8, 383 (2009)
Nitrogen-vacancy centre (NV-)
J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Magnetometry in Diamond
1 electron spin at 50 nm:
MS Grinolds et al., Nat Phys 9, 215 (2013)
NMR with (5 nm)3 volume:
T Staudacher et al., Science 339, 561 (2013)
HJ Mamin et al., Science 339, 557 (2013)
Nanodiamond magnetometry: expect 290 nT Hz-1/2
ME Trusheim et al., Nano Lett 14, 32 (2013)
Bulk ensemble magnetometry: expect 150 fT Hz-1/2 from 100 μm diamond
VM Acosta et al., PRB 80, 115202 (2009)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Nano-thermometry in Diamond
Ambient thermometry: 5 mK Hz-1/2 in bulk, 130 mK Hz-1/2 in nanodiamonds
G Kucsko et al., Nature
500, 54 (2013)
P Neumann et al., Nano Lett
13, 2738 (2013)
Nitrogen-vacancy centre (NV-)
J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Nano-electromechanical diamond
Cantilever:
S. Kolkowitz et al., Science 335, 1603 (2012)
Phonons:
K. C. Lee et al., Science 334, 1253 (2011)
Nitrogen-vacancy centre (NV-)
J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atomic Spins
- Diamond gyroscope
Projected sensitivity of 10−5 rad s−1 Hz−1/2:
MP Ledbetter et al., PRA 86, 052116
(2012)
Levitated crystals:
Y Arita, M Mazilu & K Dholakia, Nat
Commun 4, 2374 (2013)
M. Scala et al., PRL 111, 180403 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Atoms for storing light
- Rare-earth-ion-doped crystals
Entangled photon storage:
C Clausen et al., Nature 469,
508 (2011)
E Saglamyurek et al., Nature
469, 512 (2011)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Spins in quantum dots
- Gate-defined dots in GaAs
Single qubit control and readout:
FHL Koppens et al., Nature 442, 766 (2006)
Electron spins, 200 µs coherence:
H Bluhm et al., Nat Phys 7, 109 (2011)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Spins in quantum dots
- Gate-defined dots in SiGe
Electron spin T1 > 2s
CB Simmons et al., PRL 106, 156804 (2011)
Electron spin T2* = 360 ns
BM Maune et al., Nature 481, 344 (2012)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Spins in quantum dots
- Self-assembled dots in GaAs
Single photon source:
Sven Hoefling talk
IJ Luxmoore et al., Sci Rep 3,
1239 (2013).
MJ Conterio et al., APL 103,
162108 (2013).
Gavin W Morley, BQIT 26th Feb 2014
Debabrata Bhattacharyya, A. C. Bryce, John H.
Marsh and Clivia M. Sotomayor-Torres, Glasgow
Solid State Hardware Overview
Solid-State Hardware Overview
• Electron and Nuclear Spins
– Atomic dopants
• Donors in silicon
• NV- colour centres in diamond
• Others (eg SiC)
– Quantum Dots
• Gate-defined
• Self-assembled
• Coherent Superconducting Circuits
– Quantum computing
• Single microwave photons
– Quantum annealing
• Hybrids of these
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
C
R
L
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
C
Energy
|excited>
R
|ground>
Φ
L
Gavin W Morley, BQIT 26th Feb 2014
Flux, Φ
MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004)
RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008)
J Clarke & FK Wilhelm, Nature 453, 1031 (2008)
MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013)
Solid State Hardware Overview
Coherent Superconducting Circuits
- Design
L Steffen et al., Nature
500, 319 (2013)
- Aluminium (Tc = 1.2 K) at 20 mK,
aluminium oxide insulator
- “Circuit QED” allows single
microwaves to be created,
transported , amplified and
detected
MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004)
RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008)
Clarke & FK Wilhelm, Nature 453, 1031 (2008)
Review:J MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
- Performance
1 qubit gate ~ 10 ns, 2 qubit gate ~ 100 ns
MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004)
RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008)
J Clarke & FK Wilhelm, Nature 453, 1031 (2008)
Review:J MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
- Nano-electromechanical
Quantum drum:
AD O'Connell et al., Nature 464, 697 (2010)
MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004)
RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008)
J Clarke & FK Wilhelm, Nature 453, 1031 (2008)
Review:J MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
- Applications for three qubits
Entanglement:
M Neeley et al., Nature 467, 570 (2010)
L DiCarlo et al., Nature 467, 574 (2010)
Quantum error correction:
MD Reed et al., Nature 482, 382 (2012)
Teleportation:
L Steffen et al., Nature 500, 319 (2013)
5 qubits with >99% gate fidelity:
R Barends et al., arXiv:1402.4848
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
- Quantum annealing is not QC
Paul Warburton talk
MW Johnson et al.,
Nature 473, 194 (2011)
NG Dickson et al.,
Nat Commun 4, 1903 (2013)
Image courtesy of D-Wave Systems Inc.
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Coherent Superconducting Circuits
- Nanowire current standard?
Quantum phase slips
JE Mooij & YV Nazarov,
Nat Phys 2, 169 (2006)
CH Webster et al.,
Phys Rev B 87, 144510 (2013)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Superconducting technologies?
- Brain scans again
MEG with an array of 300
SQUIDs operated as classical
magnetometers
Also single photon detectors:
- F Marsili et al., Nat Photonics 7, 210
(2013)
- CM Natarajan, MG Tanner & RH
Hadfield, Superconductor Science &
Technology 25, 063001 (2012)
- J Kuur et al., JLTP 167, 561 (2012)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Solid-State Hardware Overview
• Electron and Nuclear Spins
– Atomic dopants
• Donors in silicon
• NV- colour centres in diamond
• Others (eg SiC)
– Quantum Dots
• Gate-defined
• Self-assembled
• Coherent Superconducting Circuits
– Quantum computing
• Single microwave photons
– Quantum annealing
• Hybrids of these
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Spin-superconductor hybrids
- Spin ensemble memory
DI Schuster et al., PRL
105, 140501 (2010)
Y Kubo et al., PRL
105, 140502 (2010)
H Wu et al., PRL
105, 140503 (2010)
Gavin W Morley, BQIT 26th Feb 2014
Solid State Hardware Overview
Solid-State Hardware
• Electron and Nuclear Spins
– Atomic dopants
• Donors in silicon
• NV- colour centres in diamond
• Others (eg SiC)
– Quantum Dots
• Gate-defined
• Self-assembled
• Coherent Superconducting Circuits
– Quantum computing
• Single microwave photons
– Quantum annealing
• Hybrids of these
Gavin W Morley, BQIT 26th Feb 2014