スライド 1

Download Report

Transcript スライド 1

Quantum transport phenomena with
the edge channels in topological superconductors
@Nagoya U. Sept. 5, 2009
Naoto Nagaosa
Department of Applied Physics
The University of Tokyo
and
Cross-Correlated Materials Research Group, RIKEN
Collaborators:
Y. Tanaka, T. Yokoyama, A.V. Balatsky
Phys. Rev. B (Rapid Communications) Vol. 79 060505 (2009)
Phys. Rev. Lett. Vol.102 166801 (2009)
Phys. Rev. Lett. Vol.103 107002 (2009)
Analogy between
chiral superconductor and QHS
Quantum Hall system
Chiral superconductor
Spontaneous
T-symmetry breaking
e2
H  n
h
n : Topological integer
Chiral edge channels
??
Chiral p-wave superconductors Sr2RuO4
Maeno (1994),
Sigrist-Rice
Spin-triplet p-wave
Time-reversal
symmetry broken
Topological index for chirality
Volovik
related to the # of edge channels but not to  H
Andreev bound state in SRO
Maeno et al. (01)
voltage
V
charge
accumulation
e2
1
compressible
  
2
h (k F  ) ground state
s
H
Furusaki-Matsumoto-Sigrist (2000)
Current
I
Majorana (real) Fermions
f , f
Usual (complex) fermions
  ( f  f )/ 2

  
 2 1
“half” of the usual (complex) fermion
“real” fermion
Chiral Majorana mode at the edge of spinless p+ip SC (A.Furusaki)

k
c.f. Majorna zero energy bound state at vortex
(Read-Green, Kitaev, Ivanov, D.H.Lee etc.)
2D topological insulator (Quantum Spin Hall system)
Time-reversal symmetric system
Spin current instead of charge current
Spin-orbit interaction
helical edge channels
Kane-Mele New topological matter
Quantum Well of HgTe system
Molenkamp-SC.Zhang
3D Topological insulator
3D generalization
of QSH system
Topological insulator
helical edge channels
H   (  p)
odd number of 2D
Dirac surface metal
- Robust against
disorder
- New state of matter
From C.L.Kane’s homepage
Proximity effect of SC and topological insulator
Fu-Kane
A
B
A
B
SC
Ferro
Ferro up
SC
 0
Ferro
Ferro down
channels
Chiral Majorana
Chiral Fermion
SC   
Helical Majorana
Metal
No channel
Non-centrosymmetric Superconductors
CePt3Si
LaAlO3/SrTiO3 interface
Bauer-Sigrist et al.
H 0   ck ( k   (k )  )ck
k
(k )  (k ) Time-reversal
(k )  (k )
Space-inversion
Mixture of spin singlet
and triplet pairings
Possible helical
superconductivity
M. Reyren et al 2007
Edge modes of various systems
Majorana
fermion
 k  k
robust
susceptible
Chiral
Chiral
Helical
Spinless
Majorana Fermion Majorana Fermion
p+ip SC
5/2 FQH
STI+SC
1/3
FQH
Helical
SC
Ferro
wire
Helical
Fermion
Spinful
Fermion
2-Spinful
Fermion
QSHS
Q-wire
Ladder
Purpose of this work
• Charge transport on the surface of topological insulator
via chiral Majorana edge mode(CMM).
• Influence of magnetization on CMM.
• Tunneling conductance in N/FI/S junction
• Josephson current in S/FI/S junctions
• Helical Majorana edge modes in non-centrosymmetric SC
Hamiltonian for the surface state
of Topological insulator
m plays the role of vector potential
N/TI/S
N/TI/S
Chiral Majorana
mode
N/FI/S junction
on top of TI (1)
z
x
y
x
Dispersion of CMM
a
b
Sign change by the direction of mz
c
Chiral Majorana mode (CMM) appears as an Andreev bound state
Change of velocity of Chiral Majorana mode (CMM) by m/mz
Chiral Majorana
mode
N/FI/S junction
on top of TI(2)
z
y
x
a
b
c
Normalized conductance has a peak at zero voltage
x
Chiral Majorana
mode
N/FI/S junction
on top of TI (3)
z
y
x
c
a
b
c
CMM is also influence by my/mz
x
Chiral Majorana
mode
S/FI/S junction
on top of TI (1)
y
x
N: Transparency of the junction
j: Phase difference
CMMs
a
b
c
S/FI/S junction
on top of TI (2)
y
Anomalous current phase relation by mx
a
b
c

Anomalous current phase relation
can be detected by interferometer
Non-centrosymmetric Superconductors
CePt3Si
LaAlO3/SrTiO3 interface
Bauer-Sigrist et al.
H 0   ck ( k   (k )  )ck
k
(k )  (k ) Time-reversal
(k )  (k )
Space-inversion
Mixture of spin singlet
and triplet pairings
Possible helical
superconductivity
M. Reyren et al 2007
Rashba superconductor
H   k (k  k 2 D  ) k   s ki y k   p ki(d (k )  ) y k  h.c.
k
Chiral base
 k
1
1
i k

(ck   e ck  ),  k  
(ck   e i k ck  )
2
2
H   (k  | k |)ckck   ( s   p )eik ckck   ( s   p )eik ckck   h.c.
k
Both + and – bands are p+ip superconductor
ky
k
k
Frigeri et al. 2004
kx
Fu-Kane, 2008
Proximity effect of 3D topological
insulator and s-wave SC
Andreev bound state energy dispersion
Low energy limit
Helical edge modes appear only when
Kramer’s pair of
Majorana edge modes
Angle resolved
Andreev reflection

Normal metal
Helical
superconductor



Doppler shift induces
spin current
Ay (0)  H z
Super current
Normal metal
Doppler/Zeeman  kF   1
Helical
SC
Magnetic field
-0.4
a : H  0, b : H  0.2H 0 ,
c :  H  0.2H 0 , d : H  0.4H 0
0.4
H0 
h
e
 0.02T
Split electrons into fractions
L
R
R or L
 or 
positiveor negativeenergy
8 pieces of fractions !!
 R   xR
R
L
harmonic
oscillator
etc.
Various combination of  ' s
can be fixed by el - el interaction
Recombination of pieces
robust
susceptible
Chiral
Chiral
Helical
Spinless
Majorana Fermion Majorana Fermion
p+ip SC
5/2 FQH
STI+SC
1/3
FQH
Helical
SC
Ferro
wire
Helical
Fermion
Spinful
Fermion
2-Spinful
Fermion
QSHS
Q-wire
Ladder
Conclusions
1. Topological insulators and non-centrosymmetric SC
with T-symmetry as new comers
2. Manipulation of the Majorana fermion, Andreev
reflection, and Josephson junction by magnetization
direction  transport perpendicular to edge
3. Spintronics functions in superconductors
using helical edge channels
4. All kinds of edge channels
- chiral, helical, Majorana, etc
- electrons are split into 8 pieces
- Recombine some of the pieces to produce a new state