Transcript Document

Chern-09
Schegolev Memorial Conference 2009
Supercurrents in ferromagnets
J. Aarts, M. S. Anwar
Kamerlingh Onnes Laboratory, Leiden.
I.
The theoretical scene :
- from LOFF state to odd-frequency triplets.
II.
The experimental scene :
- Experiments with CrO2 .
+ discussions / experiments with
T. Klapwijk (Delft),
S. Goennenwein, F. Cheska (HMI- München)
S/F hybrids – some history, proximity effect
Chern-09
S/F multilayers, oscillation of Tc(dF)
Theory : Radovic, .., Buzdin
PRB 1991
Experiment : Nb / Gd multilayer
Jiang, PRL 1995
Chern-09
I. F / S hybrids; inhomogeneous superconductivity in ‘weak F’
The 'LOFF' - state :
pairing in presence of exchange
field : not between +k↑ and -k↓.
• Larkin & Ovchinnikov, Sov. Phys. JETP '65;
• Fulde & Ferrell, Phys. Rev. '64
Characteristic : inhomogeneous pair density; e.g C-pair from S to F.
In F (exchange field h), pair gains momentum
2h
 Q  eiQx or 2h  Q  e iQx
vF
vF
oscillates : cos(Qx)
So, S induces in F :
oscillatory damped
pair density.
Chern-09
Oscillations : length scale ξF
 F 1,2 
and can change phase – by π
D
( Eex2  ( k BT )2 )1/ 2   k BT
Eex >> kBT ,
F 
DF Eex
Eex  1 eV (Ni)  ξF  1 nm
Eex  kBT
ξF1 : decay
ξF2 : period
Need weak magnets for large ξF :
Cu50Ni50 , Pd90Ni10 , etc. ξF → 10 nm
S / F / S π - junction
Chern-09
Consequences : oscillations
in Tc(dF)
and Ic(T) / Ic(dF)
Nb / Co multilayer
Nb / CuNi junction
Obi, Phys C ‘99
Oboznov – Ryazanov, PRL ‘06
note small dF
New development : odd-frequency triplets
Chern-09
attractive interaction + exchange : spin singlet + spin triplet
Pauli : singlet : spin odd, orbit even  s , (d) ‘ = ‘ Nb, YBCO
triplet : spin even, orbit odd  p , (f) ‘ = ‘ Sr2RuO4
but, ‘Pauli’ = ‘equal times’ only.
Using negative times / frequencies allows to circumvent this :
triplet : spin even, ω odd, orbit even  s : isotropic , (d)
Matsubara : n  n with f0(n) = f0(-n) and f1(n) = -f0(-n)
The receipe for triplets :
Spin mixing by different spin scattering at interface
singlet |> - |> → m=0 triplet |> + |>
Spin rotation by exchange field then also yields
m=1 triplet |> and |>
Chern-09
Volkov / Bergeret / Evetov
• mix
at interface,
• rotate in domain wall
• end
with |>
Possibly observed : Ho bridge in
Al loop (Sosnin – Petrashov, PRL ’06)
triplet
singlet
Triplet is not broken in F :
Long range proximity !
Supercurrent
Chern-09
Halfmetallic ferromagnet – mix and rotate at interface
Eschrig, N Phys ‘ 08
• weak magnet does not introduce much m = 0 component.
• rotation is by disordered interface moments.
• Effect is long range, no spin flip in HFM.
F 
DF
k BT
Special feature : π / 2 shift at each interface
π – junction without thickness dependence
Chern-09
Possible to measure ?
Braude ’07 , Asano ‘07
½ Φ0 by scanning SQUID
LDOS by low-T STM
S
S
F
Δ0
zero-bias conductance peak
Hilgenkamp / Kirtley 2006
Chern-09
Zero-bias conductance peak ? As in d-wave HTS
Surface Andreev Bound
State has zero-energy
solution - ZBPC
YBCO (110)
sample
Maarten v.Zalk
Twente
data
Simon Kelly
Leiden
Leiden LT-UHV-STM,
300 mK, 8 T
operational since fall ’08
(Federica Galli)
Chern-09
Candidates for the triplet supercurrents : (La,Sr)MnO3 , CrO2
Found in CrO2
/ NbTiN ?
100 nm
Keizer, Klapwijk, Gupta et al, Nature 2006
F - films from Alabama ; S - contacts in Delft
Note the biaxial anisotropy
revisited in Leiden
Chern-09
CrO2 – difficult as thin film
• not by sputtering, PLD, MBE
only CVD, and only on TiO2
modified with extra precursor heater
• S contacts are not grown in-situ surface cleaning issue
• intermediate thickness has
biaxial anisotropy
Chern-09
Morphology is subtle – depends on
pretreatment TiO2 (HF etch)
Basic properties reproduce well
TiO2, Untreated
TiO2, Treated
[001]
1.0µm
1.0µm
roughness of order 2 nm
Basis for biaxial anisotropy.
easy axis
Bulk CrO2
: c
Strained (TiO2) : b
Relax
: bi-axial (100 nm)
c
(200 nm
Chern-09
2008 – new expts on
Alabama and Leiden
samples
contacts by lift-off
after Ar-etching the
surface.
CrO2 + (Nb,Ti)N
and
CrO2 + a-MoGe
Problem is interface and / or
magnetic stuff and / or
something else.
Try something different, grow
on sapphire …..
CrO2
Cr2O3
Al2O3
no supercurrent
Chern-09
CrO2 on Al2O3
[001]
60o
60o
[001]
a
AFM
3c
Chern-09
HREM
Rabe – Güntherodt
J.Phys.Cond.Mat ‘02
Note the Cr2O3 layer, and the
columnar growth of the CrO2
Use different structure (larger)
Chern-09
zero-bias resistance
lift-off
film
disordered
and rough
I-V, current-biased
Chern-09
200
J004
J005
dCrO2 = 100 nm
IC (A)
150
104 A/cm2
100
compare Nb / CuNi
50
0
1
2
3
4
5
6
T (K)
Ic (T) - 1 μm slit; two samples
Dev. A : 1 mA  5  105 A/cm2
dCrO2 = 100 nm
Chern-09
Ic (Ha) at 3 K,
field in-plane,  bridge
compare CrO2 on TiO2
45 mT
80 mT
• increase with Ha
• Φ0 / 2 = 80 mT
junction area : 1 μm  dCrO2
junction area : 0.3 μm  dCrO2
dCrO2 = 10 nm - smallish
dCrO2 = 70 nm - nominally 100 nm
Chern-09
Thouless-energy analysis
S/N : Ic ~ T3/2 exp(-2πkBT / Eth)1/2 ;
-8
Eth=72eV
J004-1B
J005-2A
Eth=91eV
eRNIc = 10.82 Eth
 ETh  80 μeV
InIC-3/2InT
-10
 = 2 μΩcm
RN = 0.2 Ω
-12
(d = 10 nm) or
RN = 20 mΩ (d = 100 nm)
-14
1.0
1.5
2.0
T
1/2
1/2
(K )
2.5
Icmax = 4 mA (d = 10 nm) or
Icmax = 40 mA (d = 100 nm)
 Ic (too) small - grain boundaries ?
Chern-09
Conclusion and outlook :
• looks like confirmation of the 1st report
• promise of (very) long range effects (1 μm at 4 K)
• promise of a novel π – junction (no thickness dependence)
In progress
• smaller gaps (increase Ic)
• contact CrO2 strips instead of film → rings
• Ic to 300 mK
→
Eschrig 2008
Main questions still not answered ….
• what constitutes a magnetically active interface
• what is the role (if any) of the magnetic anisotropy ?
Chern-09
Alabama – Delft sample