geometric representation of complex numbers
Download
Report
Transcript geometric representation of complex numbers
GEOMETRIC
REPRESENTATION OF
COMPLEX NUMBERS
A Complex Number is in the form: z = a+bi
We can graph complex numbers on the axis shown below:
4
2
-5
5
-2
-4
Imaginary Axis
Real axis
ABSOLUTE VALUE OF A
COMPLEX NUMBER
z 3 4i
4
2
-5
5
-2
•An arrow is drawn from
the origin to represent the
complex number.
-4
•The length of the arrow
is the absolute value of the
complex number.
REPRESENTING COMPLEX
NUMBERS USING RECTANGULAR
VS. POLAR COORDINATES
a r cos
8
(a,b)=(r,)
6
b r sin
z a bi
4
b
So, z r co s ( r sin ) i
z r (co s i sin )
2
a
5
We abbreviate this as “cis”
z rcis
Complex Numbers
Rectangular Form: z a bi
Polar Form: z
r cis
Example:
Convert z 3 cis 5 5
to rectangular form.
Formulas:
a r cos
b r sin
Example:
Convert z 2 3i to polar form.
Formulas:
r
2
a b
2
bI
F
tan
Ha K
Example:
What is the absolute value of the following complex numbers:
z 3 2i
z 4 cis
2
3
Multiply: 3 cis165 4 cis 45
Do you want to go thru that every time?
rcis tcis r t cis
Multiply: 4 cis 25 6 cis 35
Divide:
3 cis165
4 cis 45
SUMMARY
To convert a+bi to polar:
Formulas:
r
ta n
To convert rcis to rectangular:
a
2
b
2
bI
F
H
aK
Formulas:
a r cos
b r sin