Transcript Polímero
1 - Introducción. Estructura: Monómeros Homopolímeros y Copolímeros. Estructura de las cadenas. Clasificación según su origen. Propiedades. Polimerización: Por Adición y Condensación. - Aplicaciones. - Comportamiento frente a la temperatura. 2 La materia esta formada por moléculas que pueden ser de tamaño normal o moléculas gigantes llamadas polímeros. Los polímeros provienen de las palabras griegas Poly y Mers, que significa muchas partes, son grandes moléculas formadas por la unión de muchas pequeñas moléculas. Los polímeros son la base de todos los procesos de la vida, 3 y nuestra sociedad tecnológica es dependiente en gran medida de los polímeros. Los polímeros se producen por la unión de cientos de miles de moléculas pequeñas denominadas monómeros que forman enormes cadenas de las formas más diversas. Algunas parecen fideos y otras tienen ramificaciones. Si hay un monómero único o varios, se forman homopolímeros o heteropolímeros. Monómeros Polímero (Homopolímero) Monómeros Polímero (Heteropolímero) 4 n n 1 MONOMERO 2 DIMERO 3 TRIMERO 4 -20 OLIGOMEROS > 20 POLIMERO 5 - Las unidades que constituyen un polímero pueden ser iguales, en cuyo caso la macromolécula formada será un homopolímero, como por ejemplo, el polietileno; o pueden ser de diferente tipo, en cuyo caso estaremos en presencia de un copolímero. - Según como se ordenen los monómeros de diferente tipo, se forman distintos copolímeros. Estas posibilidades se representan a continuación en forma genérica, empleando los monómeros A y B: 6 • -A-A-A-A-A-A-A-A-A-A-A-A-A- Homopolímero • A-B-A-B-A-B-A-B- Copolímero regular • -A-B-A-A-B-B-A-B-A-A-A-A- Copolímero aleatorio • -A–A–A–A–A–A–B–B–B–B–B–BCopolímero en bloque • A – A – A – A – A – A –A B–B–B–B- Copolímero de inserción 7 Lineal Ramificado Entrecruzado 8 Los polímeros pueden ser de origen natural, es decir, sintetizados (fabricados) por la naturaleza, o bien, pueden ser hechos por el hombre, y en ese caso, se les denomina polímeros sintéticos. Una tercera posibilidad es que el hombre modifique un polímero natural, con el fin de obtener un producto con determinadas propiedades. Tal es el caso, por ejemplo, del acetato de celulosa, una fibra semi-sintética ampliamente empleada en la industria textil. 9 Naturales: proteínas, polisacáridos (almidón), ácidos nucleicos, el caucho natural, etc. Sintéticos: nylon, teflón, polietileno, PVC, poliestireno, poliéster, etc. 10 11 Polímero (Proteína) Monómeros (aminoácidos) 12 Modelo De WATSON-CRICK 13 Monómero (glucosa) Polímero (almidón) Carbohidrato formado por Glucosa (azúcar) y que se utiliza como fuente de energía. Esta presente en organismos vegetales 14 15 Hule + Azufre Caucho Caucho estirado 16 17 Las macromoléculas más importantes para la vida son: hidratos de carbono, ácidos nucleicos, lípidos y proteínas POLÍMERO MONÓMERO Proteínas Aminoácido Ácidos nucleicos Nucleótido Hidratos de carbono monosacárido 18 19 Los primeros polímeros sintéticos fueron los plásticos, hechos a partir de la celulosa a mediados del siglo XIX (1865). Luego, en el siglo XX, se logró sintetizar fibras que imitaban la seda, por ejemplo el nylon. Otros polímeros son el teflón, polietileno, poliuretano, entre otros. 20 Se obtienen industrialmente por procesos de polimerización a partir de materias primas de bajo peso molecular. El campo de los polímeros sintéticos ha tenido un gran desarrollo en este siglo. Para ello basta mencionar cinco clases de polímeros, ampliamente usados en la actualidad con fines muy diversos: los plásticos, fibras, elastómeros, adhesivos y recubrimientos. Todos ellos son polímeros sintéticos orgánicos derivados del petróleo y gas natural. También el hombre ha desarrollado polímeros de origen inorgánico, como la fibra de vidrio, fibra de carbono, el Nylon, PVC, el poliestireno, polietileno, el teflón, etc. 21 Polietileno Usado en bolsas de plástico y juguetes nylon Usado en cuerdas, medias, textiles Poliestireno Usado en la elaboración de “hielo seco” y espumas aislantes 22 PVC Usado en las tuberías de drenaje poliéster Usado en Textiles F F Teflón C - C F F Anti adherente usado en sartenes n 23 24 La gran variedad de polímeros que existen hace imposible definir características comunes para ellos, ya que dependiendo de su proceso de producción y de las materias primas usadas, los polímeros pueden tener características muy diversas como: resistencia a los golpes, al calor, a los cambios de temperatura, flexibles, suaves, duros, elásticos, impermeables, resistentes a la oxidación, a los ácidos, biodegradables o no, maleables, de alta o baja densidad, etc. 25 • Las propiedades físicas y químicas de los polímeros (dureza, rigidez, viscosidad, densidad, masa molecular, solubilidad, reactividad, etc.) y sus usos, difieren notablemente de los que poseen las pequeñas moléculas que se utilizan en su fabricación (síntesis). • Tienen una alta masa molecular (Ej: C2000H4002 polietileno 28000g/mol). • Tienen una excelente resistencia mecánica ya que las cadenas poliméricas se atraen. Las fuerzas de atracción dependen de la naturaleza del polímero. • A temperaturas mas bajas, los polímeros tienden a endurecerse. • La mayoría de los polímeros son malos conductores de la electricidad. 26 27 ALGUNAS FIBRAS • ·Acetato: Se prepara a partir de celulosa extraída de pulpa de madera por esterificación con ácido acético y anhídrido acético en presencia de ácido sulfúrico. La resistencia de las fibras está dada por la linealidad de las moléculas (poca ramificación), lo cual hace que puedan encajarse bien una al lado de la otra y las fuerzas intermoleculares las mantengan unidas. Se puede obtener con un amplio rango de colores y lustres, es suave, seca rápidamente, es resistente a la humedad ,no encoge. Usos: ropa, telas, películas fotográficas, filtros de cigarrillo, almohadas. 28 • Acrílico: Compuesto por unidades repetitivas (–CH2-CH(CN)-)n. Es suave, de aspecto similar a la lana, retiene su forma, es resistente a polilla, luz solar, aceite y agentes químicos. Usos: frazadas, alfombras, buzos, medias. 29 30 A Ti te rodean los polímeros, o en palabras más sencillas, algún tipo de plástico. Incluso puedes estar vestido con algo de ellos. Conocidas son sus múltiples y variadas aplicaciones. Sin embargo, el reto actual en diversas partes del mundo es desarrollar nuevos tipos de estos materiales que se consideran las "armas del futuro". Y la polimerización se denomina así, porque la industria tiene como propósito el desarrollo de polímeros útiles pero que no impacten en la contaminación 31 • La polimerización es un proceso que permite la formación de polímeros tanto naturales como sintéticos, a partir de monómeros. 32 La unión de un monómero hace una macromolécula (polímero) ,donde la unidad monomérica se repite y se representa entre corchete. Cl Cl C=C Cl Cl Cl Cl Cl Cl Cl Cl -C–C–C–C–C-CCl Cl Cl Cl Cl Cl Cl Cl C - C Cl Cl Monómero Tetracloroetileno Polímero Polimerización: Es la reacción para producir un polímero (como la que se observa arriba). 33 n 34 • La polimerización comienza por un radical, un catión o anión. 35 36 37 38 39 40 41 42 43 44 45 El Silicio forma una variedad de polímeros naturales inorgánicos, como los silicatos que contienes unidades de SiO4. En las siliconas, dos de los oxígenos de la unidad SiO4 han sido reemplazados por grupos hidrocarbonados, dando lugar a polímeros con estructura (-O-SiR2-)n. Aplicaciones: Tapas de bujías Cables Mangueras de calefacción Tubos para diálisis y transfusiones Catéteres Implantes 46 Siliconas 47 48 Clasificación de los Polímeros -Según su origen -Según su mecanismo de polimerización -Composición Química • -Según sus aplicaciones • -Según su comportamiento a la Temperatura 49 50 • Proceden de recursos naturales como el petróleo, gas natural, carbón y sal común. • Termoplásticos • Termoestables 51 52 53 54 55 56 57 58 59 POXIPOL 1 ¿Por qué el pegamento epoxi (Poxipol) viene en dos pomos diferentes que se mezclan? Uno de los pomos contiene un polímero de bajo peso molecular con grupos epoxi en sus extremos, mientras que el segundo pomo contiene una diamina 60 • Cuando se mezclan ambas partes, el diepoxi y la diamina reaccionan entre sí mediante el ataque del par electrónico libre del grupo amino a uno de los carbonos unidos al oxígeno del epóxido. 61 No sólo el mismo grupo amino puede volver a reaccionar, sino que tanto el grupo amino como el époxido que aún no han reaccionado pueden hacerlo, y por sucesivas reacciones las moléculas se enlazan para formar una red entrecruzada gigantesca. La rigidez del polímero dependerá del grado de entrecruzamiento, y esto a su vez de la relación aminaepóxido que se utilice. Por eso, es posible regular la dureza del Poxipol de acuerdo a la cantidad de material que se tome de cada pomo. 62 63 •Bloomfield, M. (1997). Química de los Organismos Vivos. 1era ed. México: Editorial LIMUSA •Garritz A. y Chamizo J.A. (1994). Química. 1era ed. •Estados Unidos: Editorial Addison-Wesley •Solomons, G. (1996). Fundamentos de Química •Orgánica. 2da. ed. México: Editorial LIMUSA 64