Transcript BE-8

Rev.13.01
Specials Function
Copyright © S.Witthayapradit.2009
 ศึกษาเกีย่ วกับวงจรอิเล็กทรอนิกส์ แบบต่ างๆ
 เรี ยนร้ ูสมรรถนะของวงจรอิเล็กทรอนิกส์ กบั การใช้ งาน
 ประยกุ ต์ ใช้ วงจรอิเล็กทรอนิกส์ กบั งานทางการแพทย์
Copyright © S.Witthayapradit.2009
 Rectifier & Precision Rectifier
 Comparators
 Astable Multivibrator
 Monostable
Half Wave Rectifier
Copyright © S.Witthayapradit.2009
+
D1
RL
vS
+
D1
vO
vS
vO
RL
2
3
4
5
0
-vP
vS
-
(ข) 0 < w < 
(ก) วงจรเรี ยงกระแสครึ่ งคลื่น
1
vO
RL
-
-
+ vP
+
D1
T ime
+ vP-V D
0
(ค)  < w < 2
1
2
3
4
5
T ime
จ) สัญญาณไฟฟ้ าทางด้านเอาต์พตุ
(ง) สัญญาณไฟฟ้ าทางด้านอินพุต
Half Wave Rectifier
Copyright © S.Witthayapradit.2009
10V
D1
VS 1
VOFF = 0
VA MPL = 1
FRE Q = 50
DC = {A }
V
5V
R1
1k
PARAMETERS:
A = 1V
0
0V
-10
-5
0
V(D1:2)
A
5
10
Half Wave Rectifier
Copyright © S.Witthayapradit.2009
D1
1.0V
V
VS 1
VOFF = 0
VA MPL = 1
FRE Q = 50
DC = {A }
V
R1
1k
0V
PARAMETERS:
A = 1V
0
-1.0V
0s
V(D1:2)
20ms
V(D1:1)
Time
40ms
Full Wave Rectifier
Copyright © S.Witthayapradit.2009
+
+
D1
vS1
+
vS2
RL
vO
-
+
vS1
+
vS2
D2
-
1
2
3
4
-
-
vS2
-
D2
(ค)  < w < 2
5
+ vP -0.7
T ime
1
2
3
4
0
5
T ime
vS2
จ) สัญญาณไฟฟ้ าทางด้านเอาต์พตุ
(ง) สัญญาณไฟฟ้ าทางด้านอินพุต
vO
+
D2
vS1
+
D1
RL
(ข) 0 < w < 
0
-vP
vO
RL
-
(ก) วงจรเรี ยงกระแสเต็มคลื่น
+ vP
+
+
D1
Full Wave Rectifier
Copyright © S.Witthayapradit.2009
D1
10V
VS 1
VOFF = 0
VA MP L = 1
FRE Q = 5 0
DC = {A}
V
R1
1k
5V
VS 2
VOFF = 0
VA MP L = 1
FRE Q = 5 0
DC = {A}
0
PARAMETERS:
A = 1V
0V
-10
-5
0
V(D1:2)
D2
A
5
10
Full Wave Rectifier
Copyright © S.Witthayapradit.2009
D1
1.0V
VS 1
VOFF = 0
VA MP L = 1
FRE Q = 5 0
DC = {A}
VS 2
VOFF = 0
VA MP L = 1
FRE Q = 5 0
DC = {A}
V
R1
1k
0V
0
PARAMETERS:
A = 1V
-1.0V
0s
V(D1:2)
D2
20ms
V(D1:1)
V(Vs2:-)
Time
40ms
Precision Rectifier
[Op-Amp Rectifier :- Half Wave Rectifier]
Copyright © S.Witthayapradit.2009
R1
R2
VS 1
VA MP L = 0.1
FRE Q = 5 0
DC = {A}
2
-
V-
+
11
3
V2
-5Vdc
0
0
5.0V
D1
OUT
VE E
VCC
0
D2
V+
U3A
0
V1
+5V dc
1k
VCC
4
1k
1
LM3 24
V
2.5V
PARAMETERS:
A = 1V
VE E
0V
-2.0V
-5.0
V(D1:2)
0
A
5.0
Precision Rectifier
[Op-Amp Rectifier :- Half Wave Rectifier]
Copyright © S.Witthayapradit.2009
R1
VS 1
VA MP L = 0.1
FRE Q = 5 0
DC = {A}
U3A
2
-
0
V2
-5Vdc
0
3
+
V-
VE E
11
V1
+5V dc
D2
D1
OUT
VCC
0
100mV
1k
VCC
4
1k
V+
V
R2
1
LM3 24
0V
V
PARAMETERS:
A = 1V
VE E
0
-100mV
0s
V(D1:2)
20ms
40ms
V(VS1:+)
Time
60ms
Precision Rectifier
[Op-Amp Rectifier :- Full Wave Rectifier]
Copyright © S.Witthayapradit.2009
R1
VS 1
VA MPL = 0.1
FRE Q = 50
DC = {A }
U3A
2
-
0
V-
+
11
V2
-5Vdc
0
3
0
10V
D1
OUT
VE E
VCC
V1
+5V dc
1k
VCC
4
1k
V+
V
R2
1
LM3 24
PARAMETERS:
A = 1V
V
5V
VE E
0
0V
-10
-5
0
V(D1:2)
A
5
10
Precision Rectifier
[Op-Amp Rectifier :- Full Wave Rectifier]
Copyright © S.Witthayapradit.2009
R1
U3A
2
-
0
+
V-
3
11
V2
-5Vdc
0
D1
OUT
VE E
VCC
V1
+5V dc
1k
VCC
VS 1
VA MPL = 0.1
FRE Q = 50
DC = {A }
0
100mV
4
1k
V+
V
R2
1
LM3 24
V
0V
PARAMETERS:
A = 1V
VE E
0
-100mV
0s
20ms
V(VS1:+) V(D1:2)
Time
40ms
60ms
Rectification of the EMG Signal
Copyright © S.Witthayapradit.2009
y=load('emg.txt');
plot(y)
xlabel('Sample number')
ylabel('EMG signal')
Remove any DC offset of the signal
y2=detrend(y);
Rectification of the EMG signal
rec_y=abs(y2);
plot(rec_y)
xlabel('Sample number')
ylabel('Rectified EMG signal')
Rectification of the EMG Signal
Copyright © S.Witthayapradit.2009
500mV
D1
V
V1
sE MG.txt
0V
V
R1
1k
-500mV
-1.0V
V(D1:2)
0V
1.0V
V_V1
0
1.0V
0V
-1.0V
0s
V(D1:1)
100ms
V(R1:2)
200ms
300ms
Time
400ms
500ms
Rectification of the EMG Signal
Copyright © S.Witthayapradit.2009
R1
R2
Vs
sEMG.txt
-
1.0V
V+
U3A
2
0
D1
3
+
1
LM3 24
V
11
VE E
V-
OUT
VCC
V1
+5V dc
1k
VCC
4
1k
V
V2
-5Vdc
0
0
0V
VE E
0
500mV
250mV
0V
-500mV
V(R2:2)
-1.0V
0s
0V
V_Vs
500mV
V(R1:2)
250ms
V(R2:2)
Time
500ms
Comparators
Copyright © S.Witthayapradit.2009
 Basic Comparator
 Window Comparator
 Hysteresis Comparator
Basic Comparator
Copyright © S.Witthayapradit.2009
5.0V
Comparator Zero-level Detection
VCC
8
5
V
VCC
+
V+
B
U1
2
B/S
Vin
VOFF = 0
VAMPL = 2.5
FREQ = 1KHz
3
-
V-
OUT
G
6
0V
RL
330
7
1
V
4
LM311
0
0
VEE
-5.0V
0s
V(Vin:+)
1.0ms
V(U1:OUT)
Time
2.0ms
Basic Comparator
Copyright © S.Witthayapradit.2009
Comparator Nonzero-level Detection
VCC
5.0V
8
5
V
VCC
V
2
+
V+
B
U1
B/S
Vin
-
LM311
Vref
1.0Vdc
0
0
G
7
1
V
0V
4
3
V-
OUT
VOFF = 0
VAMPL = 2.5
FREQ = 1KHz
6
RL
330
VEE
-5.0V
0s
0.5ms
1.0ms
1.5ms
V(Vin:+) V(U1:OUT) V(Vref:+)
Time
2.0ms
Basic Comparator
Copyright © S.Witthayapradit.2009
Window Comparator
Copyright © S.Witthayapradit.2009
Window Comparator
Copyright © S.Witthayapradit.2009
VCC
V
VCC
2
+
8
5
5.0V
V+
B
U3
B/S
3
0
-
V-
OUT
Vref1
1.0Vdc
G
6
RL
330
7
1
V
V
4
LM3 11
0V
VE E
U4
2
+
LM3 11
Vref2
0.5Vdc
0
4
-
V-
OUT
3
0
B/S
V
VA MPL = 2.5
FRE Q = 1K Hz
V+
B
Vi n
8
5
VCC
VE E
G
6
7
1
-5.0V
0s
0.5ms
1.0ms
V(U3:OUT) V(Vref2:+)
V(Vref1:+)
Time
1.5ms
V(Vin:+)
2.0ms
Effects of Input Noise on Comparator
Copyright © S.Witthayapradit.2009
VCC
B/S
OUT
3
-
V-
Vs
VA MPL = 2.5
FRE Q = 1K Hz
+
V+
B
U3
2
8
5
V
VCC
G
6
RL
330
7
1
V
5.0V
4
LM3 11
Vn
VA MPL = 0.5
FRE Q = 30 KHz
0
VE E
0
0V
-5.0V
0s
V(Vs:+)
0.5ms
V(U3:OUT)
1.0ms
Time
1.5ms
2.0ms
Effects of Input Noise on Comparator
Copyright © S.Witthayapradit.2009
R1
R2
VCC
1k
10K
VCC
B/S
V
+
Vs
VA MPL = 2.5
FRE Q = 1kHz
4
-
V-
OUT
3
5.0V
8
5
V
U4
2
V+
B
0
R3
1k
Vn
VA MPL = 0.25
FRE Q = 30 K
VE E
G
6
7
1
LM3 11
V
0V
0
-5.0V
0s
V(R2:2)
1.0ms
V(R1:2)
2.0ms
V(Vs:+)
Time
3.0ms
Hysteresis Comparator
Copyright © S.Witthayapradit.2009
R1
R2
VCC
1k
10K
U4
+
B/S
V
2
V+
B
0
R3
1k
8
5
VCC
V
-
V-
3
OUT
0
4
LM3 11
Vi n
ppg.txt
VE E
G
6
7
1
V
Hysteresis Comparator
Copyright © S.Witthayapradit.2009
VCC
VCC
8
5
5.0V
+
V+
B
U1
2
B/S
0
LM311
Vin
ppg.txt
-
G
7
0V
1
V
SEL>>
-5.0V
4
3
V-
OUT
RL
1k
6
V(C2:2)
VEE
0
R1
V(U1:OUT)
5.0V
R2
VCC
1k
0V
10K
VCC
8
5
0
R3
1k
B/S
6
-5.0V
0s
V
+
V+
B
U4
2
V
-
V-
3
OUT
0
4
LM311
Vin
ppg.txt
VEE
G
7
1
V
1.0s
V(R2:2) V(C2:2)
2.0s
Time
3.0s
4.0s
V
Astable Multivibrator
Copyright © S.Witthayapradit.2009
8
SCN
Output
R eset
R
Switched Capacitor Filter
Input
4
V CC
T hr esh
6
V T H CM P1
-
Clock
OU T
CL
+
R
Q
S
Q
R
V TL
+
T
T r ig
2
D isch
7
CM P2
-
C lock
R
Q
100
Copyright © S.Witthayapradit.2009
1
GN D
3
Astable Multivibrator
Charge
Copyright © S.Witthayapradit.2009
VCC
4
R1
7
Reset
Dis.
8
VCC
OUT
3
Output
R2
6
C EX T
Discharge
2
555
Tresh.
Trig
GND
1
Cont.
5
C1
1.44
f 
R1  2 R 2 C EXT
Astable Multivibrator
Copyright © S.Witthayapradit.2009
http://www.williamson-labs.com/
Astable Multivibrator
Charge
Copyright © S.Witthayapradit.2009
tH = 0.694(R1+R2)CEXT
VCC
4
R1
7
Reset
Dis.
8
VCC
OUT
tL = 0.694 R2 CEXT
3
Output
R2
6
C EX T
Discharge
2
555
T = 0.694(R1+2R2)CEXT
Tresh.
Trig
GND
1
T = tH + t L
Cont.
5
R1  R 2
Duty cyc. 
100 %
R1  2 R 2
C1
Astable : Design Example
Copyright © S.Witthayapradit.2009
ออกแบบวงจรสร้างสัญญาณนาฬิกา
ที่ความถี่(f) เท่ากับ 100Hz และ
Duty Cycle  50%
VCC
R1
9.1KW
R2
180 kW
4
7
VCC
OUT
3
Output
6
2
C EX T
39nF
Reset
Dis.
8
555
1.44
R1  2R2  
 369 kW
100Hz  39nF
Tresh.
Trig
GND
1
Cont.
กำหนดให้ CEXT = 39nF จะได้
5
C1
เมื่อ Duty Cycle  50% R2 >> R1
ถ้ ำให้ R2 = 180 kW จะได้ R
1
 9.1 kW
Astable Multivibrator
Copyright © S.Witthayapradit.2009
VCC
V
8
U1
2
4
5
6
7
R1
9.1K
Cext
390nF
VCC
TRIGGER
RE SE T OUTP UT
CONT ROL
THRE SHOLD
DISCHARGE
GND
C2
10nF
0
0
1
0
V
R2
180k
3
5.0V
R3
1k
555C
0 2.5V
0V
0s
200ms
V(U1:OUTPUT) V(R2:2)
Time
400ms 500ms
Monostable Multivibrator
Copyright © S.Witthayapradit.2009
T  1.1  R1 C
Design Example
Copyright © S.Witthayapradit.2009
VCC
4
R1
7
6
Trig
C
2
Reset
Dis.
8
VCC
OUT
Output
Tresh.
Trig
GND
1
ออกแบบช่วงเวลาเปิ ด(T) เท่ากับ 600mSec.
3
Cont.
5
555
Monostable Multivibrator
C1
กาหนดให้ตวั เก็บประจุ(C) มีค่า 270nF
จะได้ R1 = 2MW
Monostable Multivibrator
VCC
R
2Meg
8
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
555B
C1
1
10nF
trig
2
4
5
6
7
Vtrig
V1 = 5
V2 = 0
PW = 0.2
PER = 1
C
270nF
0
U3
0
0
0
VCC
V
V
Copyright © S.Witthayapradit.2009
3
5.0V
RL
100K
0
2.5V
SEL>>
0V
V(trig)
5.0V
Trig
2.5V
0V
0s
1.0s
V(U3:OUTPUT)
2.0s
Time
3.0s
Timing Diagram
Copyright © S.Witthayapradit.2009
VCC
5.0V
V
8
2
4
5
6
7
R1
9.1K
Cext
390nF
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
C2
10nF
0
2.5V
3
R3
1k
555C
1
0
V
U1
R2
180k
0
0V
0s
200ms
V(U1:OUTPUT) V(R2:2)
400ms 500ms
Time
0
VCC
5.0V
2.5V
8
U3
trig
2
4
5
6
7
C
270nF
0
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
555B
C1
1
10nF
Vtrig
V1 = 5
V2 = 0
PW = 0.2
PER = 1
0
0
V
V
R
2Meg
0
3
SEL>>
0V
5.0V
V(trig)
2.5V
RL
100K
0
0V
0s
1.0s
V(U3:OUTPUT)
2.0s
Time
3.0s
Trig & Re-trig
Copyright © S.Witthayapradit.2009
5.0V
2.5V
0V
V(trig)
5.0V
2.5V
SEL>>
0V
0s
1.0s
V(U3:OUTPUT)
2.0s
3.0s
Time
4.0s
5.0s
Reset
Copyright © S.Witthayapradit.2009
VCC
Reset
V
Reset
U1
R2
180k
2
4
5
6
7
R1
9.1K
Cext
390nF
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
C2
10nF
0
0
555C
1
0
3
0
V
V4
reset.txt
8
5.0V
R3
1k
0
2.5V
0V
V(RESET)
5.0V
2.5V
SEL>>
0V
0s
1.0s
2.0s
3.0s
V(R3:2)
Time
4.0s
5.0s
Tone-Burst
VCC
Copyright © S.Witthayapradit.2009
8
VCC
TRIGGER
3
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
555B
C1
1
10nF
V
Trig
V1 = 5
V2 = 0
TD = 1m
TR = 1m
TF = 1m
PW = 0.2
PER = 1
2
4
5
6
7
V5
C
270nF
0
0
0
8
U3
U1
R2
180K
2
4
5
6
7
V
R1
9.1K
Cext
39nF
0
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
C2
10nF
0
0
555C
1
0
V
R
2Meg
VCC
3
R3
1k
0
5.0V
2.5V
0V
V(Trig)
5.0V
2.5V
0V
V(U3:OUTPUT)
5.0V
SEL>>
0V
0s
1.0s
2.0s
3.0s
V(R3:2)
Time
4.0s
5.0s
CD4047 : Astable/Monostable
Copyright © S.Witthayapradit.2009
CD4047 : Astable/Monostable
Copyright © S.Witthayapradit.2009
Exercises
V
VCC
Copyright © S.Witthayapradit.2009
VCC
8
VCC
TRIGGER
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
555B
C1
1
10nF
Trig
2
4
5
6
7
V
V1
V1 = 5
V2 = 0
PW = 0.2
PER = 1
C
270nF
0
0
0
8
U3
U1
R2
180K
VCC
TRIGGER
3
RESET OUTPUT
CONTROL
THRESHOLD
DISCHARGE
GND
C2
555C
1
10nF
2
4
5
6
7
3
R1
9.1K
Cext
39nF
0
V
R
1Meg
0
0
0
R3
1k
0
5.0V
2.5V
0V
V(Trig)
5.0V
2.5V
0V
V(U1:RESETbar)
5.0V
SEL>>
0V
0s
1.0s
V(U1:OUTPUT)
2.0s
3.0s
Time
4.0s
5.0s
Reference
Copyright © S.Witthayapradit.2009
[1] Sergio Franco , “Design with Operational Amplifiers and
Analog Integrated Circuits” , Third edition , McGraw-Hill , 2002.
[2] James W.Nilsson , Susan A.Riedel , “Electric Circuits” , 8th
Edition , Prentice Hall , 2008.
[3] Thomas L.Floyd , “Electronic Devices” , 7th Edition , Prentice
Hall Inc. , 2005.
Rev.13.01
Specials Function
The End
Q&A