Leachate`s Phytoremediation on Ft Collins` Landfill

Download Report

Transcript Leachate`s Phytoremediation on Ft Collins` Landfill

Leachate’s Phytoremediation at the Fort Collins Landfill

B Y : C A R L O S Q U I R O Z & A L I M E H D A W I I N S T R U C T O R : E L I Z A B E T H P I L O N – S M I T H S N O V E M B E R , 2 0 1 0

Photographic credit: Quiroz, 2010

Background

Photographic credit: Quiroz, 2010

Background

 Basic concepts Landfill Leachate

Background

 Fort Collins Landfill Background Operation Leachate Management Photographic credit: Quiroz, 2010

Background

 Fort Collins Landfill Background Operation Recycling Hazardous management Leachate Management Photographic credit: Quiroz, 2010

Background

 Fort Collins Landfill Background Operation Recycling Hazardous management Leachate Management Photographic credit: Quiroz, 2010

Background

 Fort Collins Landfill Background Operation Recycling Hazardous management Leachate Management Photographic credit: Quiroz, 2010

Background

 Fort Collins Landfill Background Operation Recycling Hazardous management Leachate Management Photographic credit: Quiroz, 2010

Background

 Fort Collins Landfill Background Operation Recycling Hazardous management Leachate Management Photographic credit: Quiroz, 2010

Background

 Scientific facts • Che et al, (2006) • Danha et al, (2006) • El Gendy, (2008) • Nagendran et al, (2008) • Jones et al, (2005) • Justin et al, (2010) • Kang et al, (2008) • Zalesny et al, (2006) • Zalesny et al, (2007) • Using Popular Trees to Remove Contaminants

Background

• Using Popular Trees to Remove Contaminants  Scientific facts • Using Popular Trees

Background

 Scientific facts • (PRS) • Passive Remediation Systems. (PRS)

Background

Scientific facts • PRS irrigates hybrid poplar with the landfill leachate

Background

Scientific facts Increasing of poplar trees biomass.

Objectives

Evaluate the current risk in the landfill.

Evaluate the current phytoremediation on the landfill.

Recommend suitable options to enhance the current situation.

Method

Topography, hydrogeology and heavy metals in ground water.

 

Heavy metals in plant tissues.

Proposals to situation.

Method

 Topography, hydrogeology and Heavy Metals in ground water.

Source: Larimer County Landfill.

Results

Geology & hydrogeology Source: Larimer County Landfill.

Results

Geology & hydrogeology Source: Larimer County Landfill.

Source: Larimer County Landfill.

Results

Geology & hydrogeology

Method

 Heavy metals in plant tissues.

Photographic credit: Quiroz, 2010

Native Plants (North) Control Samples (South)

Method

 Heavy metals in plant tissues.

Sunflower Cottonwood Smooth brome

Photographic credit: Quiroz, 2010

Method

 Heavy metals in plant tissues.

Photographic credit: Quiroz, 2010

Method

 Proposals to situation - Buffer strip.

Remediation of ground water through the irrigation of plants.

Licht & Isebrands (2005).

Results

Cotton Wood Metal

Arsenic

PPM

0

Stand. Desv

0 Cadmium

Results

5.10

0.12

4.16

0.12

Copper Iron  Lead 4.63

Metals in plant tissues. 2.77

5.10

1.65

Magnesium

3670.60

1001.48

North Samples Manganese

67.69

26.67

Mercury

Molybdenium

Nickel

0.44

0.37

0.13

0.69

0.83

0.19

% Dry Mass

0.00000

0.00051

0.00001

0.00046

0.00274

0.00022

0.36706

0.00677

0.00004

0.00004

0.00001

Sulfur

Selenium

Tellurium

Vanadium

Tungsten

Zinc

11858.60 6014.05

19.22

3.31

50.86

0.00

56.76

0.00

1.23

119.88

2.70

216.72

1.18586

0.00192

0.00509

0.00000

0.00012

0.01199

PPM

0 0.15

0.20

5.67

51.06

1.55

2357.01

33.88

0.00

1.42

0.09

4255.66

18.54

78.49

6.62

0.33

0.00

Smoothbrome Sunflower Stand. Desv

0 0.19

0.30

2.51

22.16

2.27

558.61

15.48

0.00

1.40

0.20

1590.24

13.28

134.63

13.58

0.74

0.00

% Dry Mass

0 0.000015

0.00002

0.00057

0.00511

0.00015

0.23570

PPM

0 0.47

0.39

45.31

128.07

2.59

3330.80

0.00339

0.00000

0.00014

0.00001

0.42557

0.00185

0.00785

0.00066

3.3111E-05

0 15.14

0.00

1.47

0.03

7092.00

20.69

94.84

0.41

1.84

88.06

Stand. Desv

0 0.33

0.88

41.15

106.77

0.73

604.23

6.24

0.00

2.15

0.06

2457.91

4.59

56.21

0.91

1.62

173.49

% Dry Mass

0.00000

0.00005

0.00004

0.00453

0.01281

0.00026

0.33308

0.00151

0.00000

0.00015

0.00000

0.70920

0.00207

0.00948

0.00004

0.00018

0.00881

Metal PPM

Arsenic Cadmium

Results

0

0.32

0.00

0

0.17

0.00

Copper  Iron Lead Metals in 33.30

plant tissues. 0.66

4.76

1.53

South Samples Manganese (Control) 736.92

4.45

Mercury 0.22

0.50

Molybdenium

Nickel

Sulfur

Selenium

Tellurium

Vanadium

Tungsten

Zinc

1.09

0.75

5125.00

12.76

107.43

5.37

1.23

114.68

1.13

0.89

2651.79

4.85

29.04

12.00

0.64

92.24

Cotton Wood Stand. Desv % Dry Mass

0.00000

0.00003

0.00000

0.00046

0.00333

0.00017

0.24570

0.00169

0.00002

0.00011

0.00008

0.51250

0.00128

0.01074

0.00054

0.00012

0.01147

PPM

0 0

0.32

8.07

70.30

3.97

2315.17

11.35

3.00

1.56

0.08

6126.73

23.14

59.60

0.35

0.85

2.85

Smoothbrome Stand. Desv

0 0

0.45

6.12

13.46

4.81

1365.92

6.60

3.82

1.17

0.18

3061.60

14.77

81.73

0.78

1.90

6.38

% Dry Mass PPM

0.00000

0.00000

0.00003

0.00081

0.00703

0.00040

0.23152

0.00114

0.00030

0.00016

0.00001

0.61267

0.00231

0.00596

0.00004

0.00009

0.00029

0 0.25

0.01

41.33

125.06

2.44

3009.00

6.62

0.00

0.20

0.74

1.17

10310.20 3316.54

13.55

6.21

33.53

43.64

0.00

0.55

82.18

0.00

0.81

112.82

0 0.09

0.01

24.77

34.28

2.30

427.98

1.59

0.00

0.42

Sunflower Stand. Desv % Dry Mass

0.00000

0.00003

0.00000

0.00413

0.01251

0.00024

0.30090

0.00066

0.00000

0.00002

0.00007

1.03102

0.00135

0.00335

0.00000

0.00006

0.00822

Metal Guideline Value PPM*

Antimony Arsenic Barium 0.02

0.01

0.70

Beryllium

Results

Calcium 0.003

 Cobalt Copper Iron Current Remediation of Groundwater by Native Manganese Mercury 0.05

0.01

0.40

0.001

0.07

0.02

Molybdenium Nickel Potassium Selenium Silver Sodium Sulfur Tellurium Thallium Tin Vanadium Tungsten Zinc 0.01

PPM**

0.020

0.019

0.824

0.001

0.001

215.842

0.021

0.011

0.014

14.766

0.014

282.263

NE 0.0002

NE 0.026

149.821

0.028

0.014

742.053

NE NE 0.013

0.1

0.029

NE 0.06

Groundwater Stand. Desv.

0.025

0.023

0.243

0.0004

0.0003

47.934

0.008

0.005

0.015

16.249

0.013

41.793

0.014

72.167

0.034

0.021

205.658

0.010

0.047

0.198

Plant Tissue PPM***

NE 0 NE NE 5.104

NE 0.394

NE 45.306

128.068

2.594

3670.6

67.688

0.442

1.47

0.126

NE 20.688

NE NE 11858.6

94.84

NE NE 6.617

1.840

119.876

Stand. Desv.

4.162

0.881

41.152

106.766

0.73

1001.48

26.667

0.692

2.151

0.194

4.588

6014.05

56.21

13.581

1.619

216.717

Plant with Highest Concentration of Metal

Cottonwood Sunflower Sunflower Sunflower Sunflower Cottonwood Cottonwood Cottonwood Smoothbrome / Sunflower Cottonwood Sunflower Cottonwood Sunflower Smoothbrome Sunflower Cottonwood

Buffer strip Area

Results

 Proposals to situation

Option 1

Solution: Buffer strip.

Plants: Cottonwood, sunflower, smoothbrome & vetiver.

Perimeter: 2.35 miles Plantation density: 10,000 plants / ha. (Sebastian et al. 2004)

Buffer strip Area

Results

 Proposals to situation

Option 2

Solution: Buffer strip plus irrigation system to remediate polluted groundwater.

Plants: Cottonwood, sunflower, smoothbrome, vetiver.

Perimeter: 2.35 miles Plantation density: 10,000 plants / ha. (Sebastian et al. 2004) Irrigation: Wells located on the landfill.

Conclusions

Conclusions

Current Risk: Antimony, Arsenic, Barium, Lead, Nickel, and Selenium are still over the guideline value.

Current Phytoremediation: Cadmium and Mercury by Cottonwood. Chromium by Sunflower.

0.17 Acres on the north side (0.09% of area) 0.57 Acres on the south side (0.32% of area) 

Suitable Options:

Buffer strip around the landfill perimeter to prevent pollution of water resources. Determine the groundwater flow to evaluate the feasibility of plant’s irrigation with leachate.

Conclusions

 None of the plants evaluated showed absortion of As. Thus, Vetiver could be applied. L.T. Danh et Al (2009)  More researches are needed to remediate antimony and barium on leachate.

 The buffer strip around the landfill could reduce the concentration of lead, nickel and selenium.

Acknowledgments

 Steve Harem, Environmental Specialist of Larimer County Landfill.

 Colin Quinn, Post-Doc, Biology Department  Elizabeth Pilon – Smiths, Professor, Biology Department.

References

          Barazani, O., Sathiyamoorthy, P., Manandhar, U., Vulkan, R. & Golan-Goldhirsh, A., 2004. Heavy metal accumulation by nicotiana glauca graham in a solid waste disposal site. Chemosphere, 54 (7), 867-872.

Che, D., Meagher, R.B., Heaton, A.C.P., Lima, A., Rugh, C.L. & Merkle, S.A., 2003. Blackwell publishing ltd. Expression of mercuric ion reductase in eastern cottonwood (populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnology Journal, 1, 311-319.

Danh, L.T., Truong, P., Mammucari, R., Tran, T. & Foster, N., 2009. Vetiver grass, vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11 (8), 664-691.

Dimitriou, I., Aronsson, P. & Weih, M., 2006. Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresource Technology, 97 (1), 150-157.

Eberts, S.M. & Shalk, C.W., 1999. Hydrologic effects of cottonwood trees on a shallow aquifer containing trichloroethene. U.S. Geological Survey.

El-Gendy, A., 2008. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth. International Journal of Phytoremediation, 10 (1), 14-30.

Jones, D., Williamson, K. & Owen, A., 2006. Phytoremediation of landfill leachate. Waste Management, 26 (8), 825-837.

Justin, M.Z., Pajk, N., Zupanc, V. & Zupančič, M., 2010. Phytoremediation of landfill leachate and compost wastewater by irrigation of populus and salix: Biomass and growth response. Waste Management, 30 (6), 1032-1042.

Justin, M.Z. & Zupančič, M., 2009. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination, 246 (1-3), 157-168.

Kang, D.-H., Tsao, D., Wang-Cahill, F., Rock, S., Schwab, A.P. & Banks, M.K., 2008. Assessment of landfill leachate volume and concentrations of cyanide and fluoride during phytoremediation. Bioremediation Journal, 12 (1), 32-45.

References

            Kim, K.-R. & Owens, G., 2010. Potential for enhanced phytoremediation of landfills using biosolids – a review. Journal of Environmental Management, 91 (4), 791-797.

Lee, R.W., Jones, S.A., Kuniansky, E.L., Harvey, G., Lollar, B.S. & Slater, G.F., 2000. Phreatophyte influence on reductive dechlorination in a shallow aquifer contaminated with trichloroethene (tce). International Journal of Phytoremediation, 2 (3), 193-211.

Nagendran, R., Selvam, A., Joseph, K. & Chiemchaisri, C., 2006. Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review. Waste Management, 26 (12), 1357-1369.

Sang, N., Han, M., Li, G. & Huang, M., 2010. Landfill leachate affects metabolic responses of zea mays l. Seedlings. Waste Management, 30 (5), 856-862.

Sebastiani, L., 2004. Heavy metal accumulation and growth responses in poplar clones eridano (populus deltoides $times; maximowiczii) and i-214 (p. $times; euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52 (1), 79-88.

Shen, C., Tang, X., Cheema, S.A., Zhang, C., Khan, M.I., Liang, F., Chen, X., Zhu, Y., Lin, Q. & Chen, Y., 2009. Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-β-cyclodextrins. Journal of Hazardous Materials, 172 (2-3), 1671-1676.

Zalesny, J., Zalesny, R., Wiese, A. & Hall, R., 2007. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. International Journal of Phytoremediation, 9 (6), 513-530.

Zalesny, R. & Bauer, E., 2007. Selecting and utilizing populus and salix for landfill covers: Implications for leachate irrigation. International Journal of Phytoremediation, 9 (6), 497-511.

Zalesny, R.S. & Bauer, E.O., 2007. Evaluation of populus and salix continuously irrigated with landfill leachate i. Genotype-specific elemental phytoremediation. International Journal of Phytoremediation, 9 (4), 281-306.

Zalesny, R.S. & Bauer, E.O., 2007. Evaluation of populus and salix continuously irrigated with landfill leachate ii. Soils and early tree development. International Journal of Phytoremediation, 9 (4), 307-323.

Zalesnyjr, R., Wiese, A., Bauer, E. & Riemenschneider, D., 2006. Sapflow of hybrid poplar (populus nigra l.×p. Maximowiczii a. Henry ‘nm6’) during phytoremediation of landfill leachate. Biomass and Bioenergy, 30 (8-9), 784-793.

Zalesnyjr, R., Wiese, A., Bauer, E. & Riemenschneider, D., 2009. Ex situ growth and biomass of populus bioenergy crops irrigated and fertilized with landfill leachate. Biomass and Bioenergy, 33 (1), 62-69.

Leachate’s Phytoremediation at the Fort Collins Landfill

QUESTIONS?

Photographic credit: Quiroz, 2010