1‧以電腦為工具探討化學反應。
Download
Report
Transcript 1‧以電腦為工具探討化學反應。
實驗九. 預測化學反應途徑與反應速率
組員名單:
段振斌
49712048
目的、原理(一)
李厚寬
49712025
原理(二) 、(三)
簡 薇
49712016
原理(四) 、步驟
實驗目的
1‧以電腦為工具探討化學反應。
2‧解分子的 electronic Schrödinger equation
藉以預測:分子結構、反應途徑、過渡態、中
間產物、產物
3‧熟悉
分子記算程式:Gaussian 03、Gauss view
分子繪圖程式:Chem Draw
4‧計算反應速率常數,並得出產量。
實驗原理
一. The Born-Oppenheimer appoximation
二. The Hartree-Fock equation
三. 6-31G basis set
四.計算反應速率常數 (Eyring equation)
B ORN -O PPENHEIMER A PPROXIMATION
Molecular Hamiltonian:
First
term: The kinetic energy of the nuclei
Second term: The kinetic energy of the electrons
Third
term: The potential energy of the repulsions between
the nuclei
Fourth term: The potential energy of the attractions between
the electrons and nuclei
Fifth
term: The potential energy of the repulsions between
the electrons
資料來源:Levine Quantum Theory 第五版 13.1節
A S AN EXAMPLE , CONSIDER
H2
ˆ
2
-
2
2
2m p
-
2
2
2m p
2m e
2
1
2
2m e
2
2
e e e e e e
- -
r r1 r1 r2 r2 r12
2
2
2
2
2
2
α、 β為兩氫原子之原子核,下標1、2
為電子1和電子2,mp為質子之質量
資料來源:Levine Quantum Theory 第五版 13.1節
利用S CHRÖDINGER 方程式找能量
:電子
:原子核
Purely electronic Hamiltonian:
資料來源:Levine Quantum Theory 第五版 13.1節
:
The nuclear repulsion
Purely electronic energy:
ˆ E
el el
el el
資料來源:Levine Quantum Theory 第五版 13.1節
Re:位能達最低點時之平衡距離
De:達平衡時之解離能
D0:分子的振動能階之最低能量(零點能量)
ν=0:zero point energy=1/2hν
Purely nuclear Hamiltonian:
ˆ E
N N
N
將電子的運動與原子核的運動用數學方法來進行分離
的過程及稱為Born-Oppenheimer approximation
因此我們將wave function寫成:
qi ,q el qi ;q N q
但B.O approxmation在計算
時,並不考慮核之間的作用力
資料來源:Levine Quantum Theory 第五版 13.1節
H ARTREE - FOCK
APPROXIMATION
◎ Consider a simpler
N-el system:
(neglect the el-el repulsion)
N
H h(i )
i 1
Recall:
→ where h(i) is the operator describing the K.E
and P.E of electron i.
Now we can write:
◎ Hartree product:
because H is the sum of one-el Hamiltonians ,
a wave function which is a simple product of
the wave functions for each electron .
ψHP(x1,x2,…,xN) = χi(x1) χj(x2)˙˙˙χk(xN)
An eigenfunction of H :
Such a many-electron wave function is termed
a “Hartree product”.
NOTE:
The Hartree product does not satisfy
the “antisymmetry principle” .
◎If we put electron-one in χi and electron-two
in χj ,we have:
ψHP12(x1,x2)= χi(x1) χj(x2)---------------(1)
ψHP21(x1,x2)= χi(x2) χj(x1)---------------(2)
We can obtain a wave function to satisfy the
antisymmetry principle by taking the appropri-
ate linear combination of these two HP.
It can be rewritten as a determinant and is
called
a“slater determinant”.
i ( x1) j ( x1)
i ( x 2) j ( x 2)
1/ 2
( x1, x 2) 2
-1/2
ψ(x1, x2,..., xN) = (N!)
i ( x1)
j ( x1)
k ( x1)
i ( x 2 )
j ( x 2)
k ( x 2 )
i ( xN )
j ( xN )
k ( xN )
Clearly,
ψ(x1,x2) = -ψ(x2,x1)
(fermion)
◎Hartree-Fock equation
where f(i) is an effective one-el operator
called the Fock operator
1 2 M ZA
f (i ) i HF (i )
2
A1 riA
Where νHF is the average potential experienced by the i-th electron due to the presence
of the other electrons.
The potential energy of interaction between
Q1Q 2
Point charges Q1 and Q2 is V 12
4 0 r12
Q1 2
V 12
dv 2
4 0 r 12
2 e s 2
Q1 e
2
V 12 e'
2
s2
2
r 12
2
e
e'2
4 0
dv 2
Adding in the interactions w/ the other el’
we have:
n
V 12 V 13 ... V 1n e'
j 2
2
sj
r
2
1j
dvj
The
Born-Oppenheimer approximation is inherently
assumed.
Relativistic
effects are completely neglected.
The
variational solution is assumed to be a
linear combination of a finite number of basis
functions.
Each
energy eigenfunction is assumed to be
describable by a single Slater determinant.
The
mean field approximation is implied.
6-31G
◎basis
BASIS SET
set: a mathematical description of orb-
itals of a system, which is used for approxim-
ate theoretical calculation or modeling. It is
a set of basic functional building blocks can
be stacked or added to have the features we
need.
a1 1 a 2 2 ... ann
curgu
u
χ稱為收斂高斯函數(contracted Gaussian)
g為初始高斯函數( primitive Gaussian)
→ 例如STO- 3G:
就是以3個初始高斯函數( primitive Gaussian)來組
合成一個基底函數組(basis set)
◎6-31G
→內殼層(inner shell):每個原子軌域(AO)以一個
基底函數來表示,此基底函數是由6個初始函數線性組
合而成。
→價殼層(valence shell):由兩個基底函數組合而
成每一的基底函數則分別是由3及1個初始函數所構成。
“*” 號代表極化函數(polarized functions),第一個*號表
示重原子中加入更高階的角動量函數,以苯為例,重原子為碳
原子,因此加入六個d形式的基底函數。第二個*號代表再每一
個氫原子中加入三個p形式的基底函數。“+” 號表加入擴散
函數(diffuse function),因此每一個碳原子中需加入三個p
及一個s形式的基底函數;另外,第二個+號表示每一個H原子
中加入一個s形式函數。
Eyring equation
k P
A B C
d [ P]
V
k [C ]
dt
C :activated complex or transition state
1. C is in pre equilibriu m with A、B
if gases ,
P C / P
P C P
RT [C ] P
[C ]
P
( PA / P )( PB / P ) PAPB RT [ A]RT [ B ] RT [ A][ B]
nA
(ideal gas : PV nRT PA RT [A]RT )
V
RT
[C ] [ A][ B]
P
d[P]
RT
k [C ] φ k Κ [A][B] k2[A][B]
dt
P
RT
k2 φ k Κ to find k2: get (1) k (2) Κ
P
2. V
(1) to get k :
k κ κ : transmiss ion coefficien t
(2) to get Κ : (equilibri um constant for A B C )
φ
q J, m νJ
ΔrE 0 /RT
recall, K (
) e
J
NA
NA qφc ΔrE /RT
0
Κ φ φ e
qA qB
where ΔrE 0 E 0 (C ) - E 0 (A) - E 0 (B)
φ
q J standard molar partition function
vibrationa l mode
q
1
1 e h / kT
h
1
kT
利用泰勒展開式
x2
h
e 1 x
, now that x
2!
kT
1
1
kT
q
h
h
1 (1
) 1 (1
) h
kT
kT
x
qC qC ,T qC , qC ,R qC , E
kT
( qC ,T qC , R qC ,E qC , )
h
kT
代入
qC
h
kT
qC
N
q
kT
kT
A C rE0 / RT
rE0 / RT
h
e
e
h q A q B
h
q A qB
NA
RT RT
kT
已知k 2 k
h
P
P
kT RT
h P
kT
C
為Eyring equation
h
以上資料來源 : Atkins CH24.4
實驗步驟
點選gview.exe