Transcript Chapter 10

CMOS Analog Design Using
All-Region MOSFET Modeling
Chapter 10
Fundamentals of sampled-data
circuits
CMOS Analog Design Using All-Region MOSFET
Modeling
1
MOS sample-and-hold circuits
Basic MOS sample-and-hold circuit (the circuit implements a trackand-hold function, but we adopt the term sample-and-hold, the most
commonly used in the literature)
CMOS Analog Design Using All-Region MOSFET
Modeling
2
Thermal noise in S/H
Equivalent circuit of the S/H
with the switch on and vi = 0.
Power spectral density of the noise voltage across the capacitor
CMOS Analog Design Using All-Region MOSFET
Modeling
3
Idealized sampling

s(t )    (t  nTs )

xs  x(t )s(t )
1 
X s  j 2 f  
X  j 2 f  jm2 f s 

Ts m
CMOS Analog Design Using All-Region MOSFET
Modeling
4
Aliasing of thermal noise
The resistor noise power spectral
density is multiplied by 2 fNB/fs:
(2kTRON ).
2 f NB 4kTRON
1
kT


fs
fs
4RON C Cf s
The fully aliased thermal noise in the
(useful) Nyquist bandwidth -fs/2 < f < fs/2 is
2
vCN
f
2fNB
kT kT
fs

Cf s C
fs
f
Simplified representation of the aliasing of thermal
noise due to sampling for the case 2fNB/fs = 6.
CMOS Analog Design Using All-Region MOSFET
Modeling
5
Thermal vs. quantization noise
 /2
2
rms
e
2
1
  e  de 
12

 /2
2
kT  2

C 12
 2B 
C  12kT 

 VFS 
Number of bits
(B)
8
12
14
16
20
2
Capacitance
(C)
3.3 fF
0.83 pF
13.3 pF
213 pF
55 nF
VFS= 1 V and T=300 K
Quantization error of digitized analog
waveform. VFS is the full-scale voltage
range and Δ is the size of the LSB
CMOS Analog Design Using All-Region MOSFET
Modeling
6
Switch on-resistance
gon, N  gon,P
gon, N
gon, P
0
VDD 
VDD  VT 0, P
nP
VDD  VT 0, N
nNt
VDD
Vin
Variation of the on-conductance of the
nMOS, pMOS, and CMOS switches with
the input voltage.
Illustration of the distortion
produced by the inputdependent delay of the MOS
S/H in the tracking mode
CMOS Analog Design Using All-Region MOSFET
Modeling
7
Linearization of the MOS sampling switch
Linearized S/H with output buffer
Sampling instant
variation (a) ordinary
S/H; (b) linearized S/H
CMOS Analog Design Using All-Region MOSFET
Modeling
8
Charge injection by the switch - 1
Ts
 5RON CH
2
fs 
RON 
1
10 RON CH
QI
For V 
2CH
RON
1
W
 QI
L
L2

 QI
 QI
1
V
fs 


10RON CH 10L2CH
5L2
For ΔV = 1mV, calculate the maximum clock frequencies for effective
channel length of 1 µm, 0.316 µm and 100 nm
µ = 500 cm2/V·s
Answer: fs : 10 MHz, 100 MHz, and 1 GHz, for 1 µm, 0.316 µm, and 100 nm
channel lengths, respectively.
CMOS Analog Design Using All-Region MOSFET
Modeling
9
Charge injection by the switch - 2
Charge injection cancellation techniques: (a) short fall time of
the clock and half-sized dummy switches, (b) fully-differential
structure
CMOS Analog Design Using All-Region MOSFET
Modeling
10
Low-voltage S/H circuits - 1
On-conductance of a CMOS switch for two different supply
voltages: (a) VDD = 5V and (b) VDD = 1.5 V
CMOS Analog Design Using All-Region MOSFET
Modeling
11
Low-voltage S/H circuits - 2
(a) Available output swing obtained by dcshifting the input signal applied to the n- and
p-MOS switches (VDSsat is the voltage
margin to either VDD or ground required for
the proper operation of the blocks, e.g.,
amplifiers, connected to the switches); (b)
Low-voltage S/H that provides dc bias for
proper operation of both switches
CMOS Analog Design Using All-Region MOSFET
Modeling
12
Low-voltage S/H circuits - 3
Bootstrapped MOS switch: (a) Simplified schematic and
(b) Input (source) and clock (gate) signals
CMOS Analog Design Using All-Region MOSFET
Modeling
13
Jitter analysis
 T is a random variable the standard deviation of which is
called (aperture) jitter a, measured in (rms) seconds.
 Typical clocks: jitter of 100 ps rms, high quality clocks jitter of
1 ps rms.
 the signal-to-noise (SNR) of the S/H due to clock jitter is given
by
 1  VFS 2 


 
2
2

   20 log
SNR  10 log10 
10
2

a  
   f sVFS  
2 

CMOS Analog Design Using All-Region
All Region MOSFET
Modeling

2 f s a

14
Resolution vs. sampling rate in A/D
Resolution, in number of bits, as stated by the manufacturer,
versus sampling rate, for A/D converters implemented in silicon
CMOS Analog Design Using All-Region MOSFET
Modeling
15
Basics of switched-capacitor (SC) filters
q1  C1vA
q2  C1vB
q  q1  q2  C1  vA  vB 
iav  q / T  C1 / T  vA  vB 
Thus, on average, the switched capacitor behaves as a resistor with
its resistance value given by
R1  T / C1  1/ C1 f s
CMOS Analog Design Using All-Region MOSFET
Modeling
16
First-order low-pass SC filter
CR vR  tn - T / 2   CvO  tn - T / 2  
  CR  C  vO  tn 
vo  tn  T / 2  vo  tn  T 
vR  tn  T / 2  vR  tn  T 
CRvR  tn  T   Cvo  tn  T   CR  C  vo tn 
CRVR2 z 1  CVo2 z 1  CR  C Vo2
Vo2
CR
z 1

2
VR
CR  C 1  z 1C /(CR  C )
CMOS Analog Design Using All-Region MOSFET
Modeling
17
Switched-capacitor integrators – 1
(a) Continuous-time and (b) parasitic-sensitive switched-capacitor
integrators.
 jT /2
T / 2

C
C1 1
e
jT
1
H z  e   

 jT
C2 1  e
C2 jT sin T / 2 
H  z  e jT 
T 1

C1 1
C2 jT
CMOS Analog Design Using All-Region MOSFET
Modeling
18
Switched-capacitor integrators – 2
2
v1
1
1
C1
V21  z 
C1 z 1/ 2
H12  z   2

V1  z 
C2 1  z 1
C2
2
v2
(a)
1
v1
2
1
C1
2
V21  z 
C 1
H11  z   1
 1
V1  z 
C2 1  z 1
C2
v2
(b)
V22  z 
C1 z 1
H 22  z   2

V1  z 
C2 1  z 1
V22  z 
C1 z 1/ 2
H 21  z   1

V1  z 
C2 1  z 1
(a) Non-inverting and (b) inverting parasitic-insensitive integrators
CMOS Analog Design Using All-Region MOSFET
Modeling
19
SC circuits as charge processors - 1
(a) Elementary charge mirror and (b) Basic SC signal processing blocks
qA  CAv  CA0 f  v  v
qB  CBv  CB0 f  v  v
qB CB 0 area(CB )


qA CA0 area(CA )
CMOS Analog Design Using All-Region MOSFET
Modeling
20
SC circuits as charge processors - 2
Third-order SC filter
qI  nT  T / 2  
CE 0
C
qA  nT   F 0 qB  nT 
C A0
CB 0
  qA  nT   qA  nT  T 

CG 0
qA  nT  T   qB  nT   qB  nT  T 
C A0
CH 0
C
C
C
qB  nT   J 0 qC  nT   D 0 qA  nT   D 0 qA  nT  T 
CB 0
CC 0
C A0
C A0
 qC  nT   qC  nT  T 
CMOS Analog Design Using All-Region MOSFET
Modeling
21
SC circuits as charge processors - 3
Signal-flow graph of the third-order SC filter
CMOS Analog Design Using All-Region MOSFET
Modeling
22
SC circuits as charge processors - 4
Measured output waveforms at (a) an intermediate node and (b)
output node of an SC filter implemented with nonlinear capacitors,
with the exception of the linear input and output capacitors
CMOS Analog Design Using All-Region MOSFET
Modeling
23