Transcript Document
TRIP GENERATION The Conventional “Four Step” Modelling Process Hutchinson, 1973 • Shall I travel somewhere? – The Trip Generation Step • Where shall I go? – The Trip Distribution Step • Which mode of transport shall I use? – The Modal Choice Step • Which route shall I take? – The Traffic Assignment Step 4 Tipe Pergerakan • Eksternal Eksternal, zona asal dan tujuan berada diluar daerah kajian; • Internal Internal, salah satu zona asa atau tujuan berada diluar daerah kajian; • Internal Internal, zona asal dan tujuan berada didalam daerah kajian; • Intrazona, zona asal dan tujuan berada didalam satu zona tertentu. Model Bangkitan Pergerakan • Tujuan menghasilkan model hubungan yang mengaitkan parameter fungsi lahan dengan jumlah pergerakan yang menuju dan meninggalkan suatu zona • Zona asal dan tujuan pergerakan biasanya dikenal dengan istilah TRIP END • Menggunakan data berbasis zona untuk memodelkan besarnya pergerakan yang terjadi. TRIP-END DEFINITIONS [Tamin, Ofyar Z, 2000] TRIP-END DEFINITIONS [Papacostas & Prevedouros, 1993] Zone j Zone i RESIDENTIAL RESIDENTIAL Food Mart NON RESIDENTIAL Two trip ends; one origin and one destination, or two attractions NON RESIDENTIAL Two trip ends; one origin and one destination, or two productions Klasifikasi Pergerakan Berdasarkan: 1. Tujuan • Kerja, sekolah, belanja, rekreasi 2. Waktu • Pagi, siang, dan sore hari 3. Karakteristik Individu • Tingkat pendapatan, pemilikan kendaraan, ukuran dan struktur rumah tangga Faktor yang Mempengaruhi: 1. Bangkitan Pergerakan untuk Manusia • Pendapatan, pemilikan kendaraan, ukuran & struktur rumah tangga, nilai lahan, kepadatan penduduk, aksesibilitas. 2. Tarikan Pergerakan untuk Manusia • Luas lantai kegiatan, jumlah lapangan pekerjaan, aksesibilitas. 3. Bangkitan dan Tarikan Pergerakan untuk Barang • Jumlah lapangan pekerjaan, jumlah tempat pemasaran, luas lahan industri. Alur Pemodelan Regresi: The selected explanatory variables: 1. Must be linearly related to the dependent variable, 2. Must be highly correlated with the dependent variable, 3. Must not be highly correlated between themselves, 4. Must lend themselves to relatively easy projection. Regression Models: Simple Y = a + bX Linear Y = a + bX REGRESSION Multiple Y = a + b1X1 + … + bnXn Non-Linear Y = a + bx + cx2 Y = aXb Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Regression Models: Pearson Correlation Matrix: Y X1 X2 X3 X4 Y X1 X2 X3 X4 1,00 0,32 0,92 0,95 0,62 1,00 0,25 0,19 0,03 1,00 0,99 0,29 1,00 0,33 1,00 Alternative Regression Models: 1. Y = a0 + a2X2 2. Y = b0 + b3X3 3. Y = c0 + c4X4 4. Y = d0 + d2X2 + d4X4 5. Y = e0 + e3X3 + e4X4 TRIP-RATE Analysis [Papacostas & Prevedouros, 1993] Trip-rate analysis refers to several models that are based on the determination of the average trip production or trip attraction rates associated with the important trip generators within the region. TRIP-RATE Analysis [Tamin, Ofyar Z, 2000] Waktu 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 Perkantoran (smp/100m2) Masuk Keluar Total 0.73 0.27 1.00 0.26 0.16 0.42 0.25 0.18 0.43 0.22 0.16 0.38 0.23 0.22 0.45 0.19 0.23 0.42 0.23 0.19 0.42 0.17 0.17 0.34 0.19 0.18 0.37 0.20 0.51 0.71 0.10 0.34 0.44 0.00 0.00 0.00 0.00 0.00 0.00 Pertokoan (smp/100m2) Masuk Keluar Total 0.04 0.02 0.06 0.08 0.04 0.12 0.55 0.15 0.70 0.80 0.42 1.22 0.78 0.65 1.43 0.60 0.56 1.16 0.65 0.59 1.24 0.57 0.70 1.27 0.61 0.68 1.29 0.50 0.95 1.45 0.45 0.58 1.03 0.00 0.00 0.00 0.00 0.00 0.00 Hotel (smp/100m2) Masuk Keluar Total 0.00 0.00 0.00 0.41 0.23 0.64 0.46 0.35 0.81 0.41 0.26 0.67 0.30 0.27 0.57 0.24 0.27 0.51 0.34 0.33 0.67 0.32 0.37 0.69 0.31 0.45 0.76 0.29 0.32 0.61 0.29 0.31 0.60 0.39 0.32 0.71 0.36 0.32 0.68 TRIP-RATE Analysis [Tamin, Ofyar Z, 2000] Perkantoran 42.250m2 , Pertokoan 30.250m2 , Hotel 16.200m2 Waktu 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 Perkantoran Masuk 308 110 106 93 97 80 97 72 80 85 42 0 0 Keluar 114 68 76 68 93 97 80 72 76 215 144 0 0 Pertokoan Masuk 12 24 166 242 236 182 197 172 185 151 136 0 0 Keluar 6 12 45 127 197 169 178 212 206 287 175 0 0 Hotel Masuk 0 66 75 66 49 39 55 52 50 47 47 63 58 Keluar 0 37 57 42 44 44 53 60 73 52 50 52 52 Total Masuk 321 200 347 401 382 301 349 296 315 283 225 63 58 Keluar 120 117 178 237 333 310 312 344 355 555 369 52 52 Parkir 201 284 453 617 666 657 694 646 606 334 190 201 207 TRIP-RATE Analysis [Tamin, Ofyar Z, 2000] 800 Jumlah Kendaraan (SMP) 700 600 500 400 300 200 100 0 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 Waktu Masuk Keluar Parkir Cross-Classification Models [Papacostas & Prevedouros, 1993] Cross-classification (or category analysis) models may be thought of as extensions of the simple trip-rate models. Although they can be calibrated as areaor zone-based models, in trip-generation studies they are almost exclusively used as disaggregate models. Number of Trips per Household Size by Auto Ownership obtained from Regional Study Household Size Auto Ownership 0 HH 1 Trips HH 2+ Trips HH Trips 1 1,200 2,520 2,560 6,144 54 130 2 874 2,098 3,456 9,676 5,921 20,165 3+ 421 1,137 2,589 8,026 8,642 33,704 Household Size Trip Rates obtained from previous Matrix Auto Ownership 0 1 2+ 1 2.10 2.40 2.41 2 2.40 2.80 3.41 3+ 2.70 3.10 3.90 Household Size Forecast Number of Household in Study Zone by Auto Ownership and Household Size Auto Ownership 0 1 2+ 1 25 125 3 2 32 175 254 3+ 10 89 512 Household Size Forecast Number of Trips in Zone determined by multiplying Trip Rates by number of Households in category Auto Ownership 0 1 2+ 1 53 300 7 2 77 490 865 3+ 27 276 1,997 4,091 TRIP GENERATION