Discrete-Time Fourier Transform

Download Report

Transcript Discrete-Time Fourier Transform

Signals & systems
Ch.3 Fourier Transform of
Signals and LTI System
4/13/2015
Signals and systems in the Frequency domain
Fourier
transform
Time [sec]
4/13/2015
Frequency
KyungHee University
[sec-1, Hz]
2
3.1 Introduction
• Orthogonal vector => orthonomal vector


vo  (1/ 2,1/ 2 ) v1  (1/ 2,1/ 2 )
 
 
 
 
vo  v1  0 vo  v0  1 v1  v1  1 vi  v j   [i  j]
for i, j  0,1
Any vector in the 2- dimensional space can be represented by weighted sum of
2 orthonomal vectors


Fourier
h  (h0 , h1 )  H  (H0 , H1 )



h  H 0vo  H1v1
• What is meaning of magnitude of H?
Fourier Transform(FT)
Inverse FT
4/13/2015



h  H 0vo  H1v1
 
 
H 0  h  vo H1  h  v1
KyungHee University
3
3.1 Introduction cont’
• CDMA?
1 1 1 1 v  (1 , 1 ,  1 ,  1) v  (1 ,  1 ,  1 , 1) v  (1 ,  1 , 1 ,  1)
vo  ( , , , ) 1
2
3
2 2
2
2
2
2
2 2
2
2 2
2
2 2 2 2
Orthogonal?
vo  v1  0 vo  v0  1 v1  v1  1
vi  v j   [i  j] for i, j  0,1, 2,3
Any vector in the 4- dimensional space can be represented by weighted sum of
4 orthonomal vectors
Orthonormal function?
vk (t )  A cos( k0t ) where 0 
vk (t )  e jk0t
where 0 
2
T
2
T

T 
vi (t )v j (t )dt   [i  j ]
 vm (t )vk* (t ) 
1
*
v
(
t
)
v
(t )dt   [m  k ]
m
k
T T 
1
1 j ( m  k ) 0t
*
v
(
t
)
v
(
t
)
dt

e
dt
m
k
T T 
T T 
4/13/2015
KyungHee University
4
3.1 Introduction cont’
1
1 j ( m  k ) 0t
1
*
v
(
t
)
v
(
t
)
dt

e
dt

1  dt  1
m
k
T T 
T T 
T T 
T
 j 2 (Tm  k ) t 
1 j ( m  k ) 0t
1
 e
dt 
e
 0
T T 
j (m  k )2 
0
i) If m  k ,
ii) If m  k ,
• Fourier Series (FS)
 Any periodic function(signal) with period T can be represented by weighted
sum of orthonormal functions.
f (t )  f (t  T ) 

 F v (t )
k 
k k
where Fk  
T 
f (t )vk (t )dt
What is meaning of magnitude of Fk?
Think about equalizer in audio system.
4/13/2015
KyungHee University
5
3.2 Complex Sinusoids and
Frequency Response of LTI Systems
cf) impulse response

 h[k ]x[n  k ]
y[n] 

 h[k ]e

k  
y[n]  e
jn

 h[k ]e
j ( n  k )
.
k  
 jk
j
 H ( e )e
jn
j
H (e ) 
,

y(t )   h( )e

j ( t  )
d  e
jt



h( )e
 j
 h[k ]e
 jk
.
k  
k  
How about x[n]  z n for complex z?

(3.1)
d  H ( j)e
How about x(t )  e st for complex s?
jt

,
H ( j )   h( )e  j d .

(3.3)
y(t )  H ( j) e j (t arg{H ( j )}) .
Magnitude to kill or not?
4/13/2015
Phase  delay
KyungHee University
6
3.3 Fourier Representations for Four
Classes of signals
• 3.3.1 Periodic Signals: Fourier Series Representations
“Any periodic function can be represented by weighted sum of
basic periodic function.”
Fourier said
(periodic) - (discrete)
(discrete) - (periodic)
Time Property
Continuous
(t)
Discrete [n]
DTFS
xˆ[n]   A[k ]e jk0n ,
k
CTFS
xˆ (t )   A[k ]e jk0t ,
(3.5)
Periodic?
k
Periodic
Fourier Series
(FS)
Discrete-Time
Fourier Series
(DTFS)
2
N
2
0 
T
0 
Non-periodic
Fourier Transform
(CTFT)
Discrete-Time
Fourier Transform
(DTFT)
(3.4)
e j ( N k )0n  e jN 0n e jk0n  e j 2 ne jk0n  e jk0n .
yes! With the period of N
4/13/2015
KyungHee University
7
Fourier transform
Time domain
N 1
Periodic discrete
2
2
0 
0 
T
N
Periodic continuous
x[n]   X [k ]e
jk0 n
frequency domain
1 N 1
X [k ]   x[n]e  jk0n
N n 0
,.
k 0
x(t ) 


X [k ]e jk0t
X [k ] 
k 
1
j
jn
x[n] 
X
(
e
)
e
d
a-periodic discrete


2


2
1 
X ( j )e jt d 
a-Periodic continuous x(t ) 

2 
z-transform
x[n] 
1
 X ( z) z
n 1
2 j
1
st
X
(
s
)
e
ds
Laplace transform x(t ) 

2 j
4/13/2015
KyungHee University
dz
j
1
T

X (e ) 
T 
x(t )e  jk0t dt

 x[n]e
 jn
n 

X ( j )   x(t )e jt dt


X ( z) 
 x[n]z
n
n 

X (s)   x(t )e st dt

8
3.3 Fourier Representations for Four
Classes of signals cont’
• 3.3.2 Non-periodic Signals: Fourier-Transform
Representations
(aperiodic) - (continuous)
(continuous) - (aperiodic)
Inverse continuous time Fourier Transform (CTFT)
(aperiodic)
(discrete)



X ( j )e jt d.
- (continuous)
- (periodic)
Inverse discrete time Fourier Transform (DTFT)
4/13/2015
1
xˆ (t ) 
2
KyungHee University
1
xˆ[n] 
2

  X (e

j
)e jn d.
9
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series
DTFS ;0
x[n] 
 X [k ]
(periodic)
(discrete)
- (discrete)
- (periodic)
N 1
Inverse DFT
x[n]   X [k ]e jk0n ,.
DFT
1 N 1
X [k ]   x[n]e  jk0n
N n 0
k 0
(3.10)
Example 3.2 Determining DTFS Coefficients
Figure 3.5 Time-domain signal for Example 3.2.
Find the frequency-domain representation of the signal depicted in Fig. 3.5
4/13/2015
KyungHee University
10
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
1 2
1
X [k ]   x[n]e  jk 2n / 5   x[2]e jk 4 / 5  x[1]e jk 2 / 5  x[0]e j 0  x[1]e  jk 2 / 5  x[2]e  jk 4 / 5
5 n2
5

Just inner product to orthonormal vectors in the 5 dimensional space!!
X[k] 
1  * 1
x  c k  ( x[2], x[1], x[0], x[1], x[2])  (e jk 4 / 5 , e jk 2 / 5 , e j 0 , e  jk 2 / 5 , e  jk 4 / 5 )
5
5

c2  (e  j 8 / 5 , e  j 4 / 5 , e j 0 , e j 4 / 5 , e j 8 / 5 )

c3  (e j12 / 5 , e j 6 / 5 , e j 0 , e j 6 / 5 , e j12 / 5 )
1   * 1  j 8 / 5  j 4 / 5 j 0 j 4 / 5 j 8 / 5
c 2  c 3  (e
,e
,e ,e
,e
)  (e j12 / 5 , e j 6 / 5 , e j 0 , e  j 6 / 5 , e  j12 / 5 )
5
5
1  *
ci  c j   [i  j ]
5
4/13/2015
KyungHee University
11
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
1 1
1
 1
X [k ]  1  e jk 2 / 5  e  jk 2 / 5   1  j sin(k 2 / 5).
5 2
2
 5
1
sin( 4 / 5)
j
 0.232 e  j 0.531
5
5
1
X [ 0]   0.2e j 0
DC!!
5
X [2] 
X [1] 
sin( 2 / 5)
1
 j
 0.276 e j 0.760
5
5
X [1] 
X [2] 
1
sin( 2 / 5)
j
 0.276 e  j 0.760
5
5
1
sin(4 / 5)
j
 0.232e j 0.531.
5
5
Figure 3.6 Magnitude and phase of the DTFS coefficients for the signal in Fig. 3.5.
Recall “weighted sum of orthonormal vectors in the 5 dimensional space”
4/13/2015
KyungHee University
12
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.3 Computation of DTFS Coefficients by Inspection





v  a 0 c0  a1c1 orthonormal c0 and c1
DFT
(v0 , v1 ) 
(a0 , a1 )
Determine the DTFS coefficients of , using the method of inspection.
x[n] 
e


j  n  
3

e
2


 j  n  
3



j n
j n
1
1
 e  j e 3  e j e 3
2
2
Figure 3.8 Magnitude and phase of DTFS coefficients for Example 3.3.
4/13/2015
KyungHee University
13
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.4 DTFS Representation of an Impulse Train
Find the DTFS Coefficients of the N-periodic impulse train
x[n] 

 [n  lN ],
l  
Figure 3.9 A discrete-time impulse train with period N.
1 N 1
X [k ]   [n]e  jkn2 / N
N n 0

1
.
N
How about in other period?
1
X [k ] 
N
3N / 2
  [n  N ]e
n N / 2
 jkn2 / N

1
.`
N
Draw X[k] in the k-axis.
(impulse train) - (impulse train)
4/13/2015
KyungHee University
14
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.5 The Inverse DTFS of periodic X[k]
Use Eq. (3.10) to determine the time-domain signal x[n] from the DTFS
coefficients depicted in Fig. 3.10
Figure 3.10 Magnitude and phase of DTFS coefficients for Example 3.5.
x[n] 
4
 X [k ]e
jk 2n / 9
k  4
 e j 2 / 3e  j 6n / 9  2e j / 3e  j 4n / 9  1  2e  j / 3e j 4n / 9  e  j 2 / 3e j 6n / 9
 2 cos(6n / 9  2 / 3)  4 cos(4n / 9   / 3)  1.
4/13/2015
KyungHee University
15
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.6 DTFS Representation of a Square Wave
Find the DTFS coefficients for the N-periodic square wave
-M n M
.
M n N M
1,
x[n]  
0,
Figure 3.11 Square wave for Example 3.6.
1
X [k ] 
N
N  M 1
 x[n]e
 jk0 n
n M

1
N
N  M 1
e
n M
 jk0 n
1

N
1 2 M  jk0 ( mM ) 1  jk0M 2 M  jk0m
X [k ]   e
 e
e
.

N m 0
N
m 0
1
X [k ] 
N
2M  1
1 
,

N
m0
2M
e jk0 M
X [k ] 
N
4/13/2015
 1  e  jk0 ( 2 M 1) 

,
 jk 0
1

e


k  0, N ,2 N , 
k  0, N ,2 N ,  ,
M
e
 jk0 n
.
n M
(3.15) 등비수열의 합
DC=mean=평균
1  e jk0 M
X [k ]  
N 1
 1  e  jk0 ( 2 M 1) 


 jk 0
1

e


1  e  jk0 / 2  e jk0 ( 2 M 1) / 2  e  jk0 ( 2 M 1) / 2 

   jk0 / 2 
jk 0 / 2
 jk 0 / 2
N e
e
e


KyungHee University
16
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
1 sin(k 0 (2M  1) / 2)
,
N
sin(k 0 / 2)
k  0, N ,2 N ,.
 1 sin(k (2M  1) / N )
,

sin(k / N )
X [k ]   N
(2M  1) / N ,

k  0, N ,2 N ,
.
k  0, N ,2 N ,
X [k ] 
DC, also
 1 sin(k (2M  1) / N )  2M  1

 
.
k 0,  N , 2 N , N
sin(
k

/
N
)
N


Then X [k ] 
1 sin(k (2M  1) / N )
. for all k.
N
sin(k / N )
lim
M=0 (impulse train)
2M+1 = N?
X [k ] 
1 sin(k )
?
N sin(k / N )
(square) - (sinc)
4/13/2015
KyungHee University
17
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.7 Building a Square Wave form DTFS Coefficients
1 sin(k (2M  1) / N )
.
N
sin(k / N )
X [k ] 

x[n] 
 X [k ]e
k  
jk0 n
symmetric

X [0]  2 X [k ] cos(k 0 n)
k 1
Evaluate one period of the Jth term in Eq. (3.18) and the 2J+1 term approximation
xˆ J [n]
for J=1, 3, 5, 23, and 25.
J
xˆ J [n]   B[k ] cos(k 0 n), (3.18)
k 0
4/13/2015
KyungHee University
18
3.4 Discrete-Time Periodic Signals:
The Discrete-Time Fourier Series cont’
Example 3.8 Numerical Analysis of the ECG
Evaluate the DTFS representations of the two electrocardiogram (ECG) waveforms
depicted in Figs. 3.15(a) and (b).
(a) Normal heartbeat.
(b) Ventricular tachycardia.
(c) Magnitude spectrum for the normal
heartbeat.
(d) Magnitude spectrum for ventricular
tachycardia.
Figure 3.15 Electrocardiograms for two
different heartbeats and the first 60
coefficients of their magnitude spectra.
4/13/2015
KyungHee University
19
3.5 Continuous-Time Periodic Signals:
The Fourier Series
Any periodic function can be represented by weighted sum of basic periodic functions.
(periodic)  (discrete)
(continuous)  (aperiodic)

 X [k ]e
jk0t
Inverse FT
x(t ) 
FT
1 T
X [k ]   x(t )e  jk0t dt
T 0
4/13/2015
k  
,.
where
(3.19) Recall “orthonormal”!!
(3.20)
KyungHee University
20
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
Example 3.9 Direct Calculation of FS Coefficients
Determine the FS coefficients for the signal
x(t ) depicted in Fig. 3. 16.
Solution :
1 2 2t  jkt
1 2 ( 2 jk )t
1
X [k ]   e e dt   e
dt 
e ( 2 jk )t
2 0
2 0
2(2  jk )
2
0
1  e4

4  jk 2
X[0]=?
FT
Figure 3.16 Time-domain signal
for Example 3.9.
4/13/2015
Figure 3.17 Magnitude and phase
for Ex. 3.9.
KyungHee University
21
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
Example 3.10 FS Coefficients for an Impulse Train. Determine the FS coefficients

x(t ) 
for the signal defined by
 (t  4l )
t  
Solution :
X [k ] 
1
1 2
1 6
 jk ( / 2 ) t
 jk ( / 2 ) t
x
(
t
)
e
dt


(
t
)
e
dt

 (t  4)e  jk ( / 2)t dt




T


2
2
4
4
4
(impulse train)  (impulse train)
Example 3.11 Calculation of FS Coefficients by Inspection
Determine the FS representation of the signal x(t )  3 cos(t / 2   / 4) using the
method of inspection.
Solution :
x(t )  3
e
4/13/2015
 X [k ]e
x(t ) 
j (t / 2   / 4 )
 3  j / 4
,
2 e

3
X [ k ]   e j / 4 ,
2
0,



e
2
jkt / 2
(3.21)
k  
 j (t / 2   / 4 )
3
3
 e j / 4e jt / 2  e j / 4e jt / 2
2
2
k  1
k 1
(3.22)
otherwise
Figure 3.18
Magnitude and phase for Ex. 3.11.
KyungHee University
22
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
Example 3.12 Inverse FS : Find the time-domain signal x(t) corresponding to the
k
FS coefficients
. Assume that the fundamental periodTis  2.
X [k ]  (1/ 2) e jk / 20
Solution : 0


x(t )   (1/ 2) e
k
k 0
jk / 20
e
jkt

  (1/ 2) k e jk / 20 e jkt
k  1


k 0
l 1
등비수열의 합
  (1/ 2) k e jk / 20 e jkt  (1/ 2) l e  jl / 20 e  jlt
x(t ) 
1
1

1
j (t  / 20 )
 j (t  / 20 )
1  (1 / 2)e
1  (1 / 2)e
x(t ) 
3
5  4 cos(t   / 20)
Figure 3.20 FS coefficients for Problem 3.9.
Figure 3.21
4/13/2015
Square wave for Example 3.13.
KyungHee University
23
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
Example 3.13 FS for a Square Wave Determine the FS representation of the square
wave depicted in Fig. 3.21.
X [k ] 
1 T /2
x(t )e  jkwot dt


T
2
T

1 To  jkwot
 1  jkwot To
e
dt

e
,
 To
T To
Tjkwo
2 sin(kwoTo )
2 e jkwoTo  e  jkwoTo

(
) 
,
Tkwo
2j
Tkwo
2T
1 To
For k=0, X [0]   dt  o
T To
T
X [k ] 
2 sin(kwoTo ) 2T0
2T

sin c(k 0 )
Tkw0
T
T
k 0
k 0
lim
k 0
2 sin(kwoTo ) 2To

Tkw0
T
where sin c(u ) 
sin(u )
u
Figure 3.22 The FS coefficients, X[k], –50  k  50, for three square waves.
In Fig. 3.21 Ts/T = (a) 1/4 . (b) 1/16. (c) 1/64.
4/13/2015
KyungHee University
24
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
To/T=1/2? (DC)  (impulse)
To  0? (impulse train)  (impulse train)
T  ? (aperiodic)  (continuous)
(square)  (sinc)
(sinc)  (square)
Figure 3.23
4/13/2015
Sinc function sinc(u) = sin(u)/(u)
KyungHee University
25
3.5 Continuous-Time Periodic Signals:
The Fourier Series cont’
Example 3.14 Square-Wave Partial-Sum Approximation
Let the partial-sum approximation to the
FS in Eq.(3.29), be given by
J
^
x j (t )   B[k ] cos(kwo t )
k 0
This approximation involves the exponential FS Coefficients with indices
Consider a square wave T  1 and T0 / T  1 / 4. Depict one period of the
 J  k  J.
J
th term in
^
this sum, and find x j (t ) for J  1,3,7,9, and 99.
Solution :
4/13/2015
k 0
1 / 2,

B[k ]  (2 /(k ))(1) ( k 1) / 2 , k odd
0,
k even

KyungHee University
26
3.6 Discrete-Time Non-periodic Signals :
The Discrete-Time Fourier Transform
(discrete)  (periodic)
1
x[n] 
2
j
X (e ) 




 x[n]e
X (e jn )e jn d
(3.31)
(3.32)
 jn
n  
DTFT
x[n] 
 X (e j )

 x[n]  
n  
4/13/2015


x[n]  
2
n  
KyungHee University
27
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.17 DTFT of an Exponential Sequence
Find the DTFT of the sequence x[n]   n u[n]
Solution :
j
X (e ) 


n  
n
u[n]e
 jn

  e
n
 jn
n 0

  (e  j ) n 
n 0
1
,
 j
1  e
 1
1
1
1
X (e j ) 

((1   cos) 2   2 sin 2 )1 / 2 ( 2  1  2 cos)1 / 2
1   cos  j sin 
 sin 
arg{ X (e j )}   arctan(
)
1   cos 
 = 0.5
 = 0.9
X (e j ) 
x[n] = nu[n].
magnitude
phase
4/13/2015
 = 0.5
KyungHee University
 = 0.9
28
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.18 DTFT of a Rectangular Pulse
Let

1,
x[n]  

0,
n M
n M
Find the DTFT of x[n].
Solution : (square)  (sinc)
Figure 3.30 Example 3.18. (a) Rectangular pulse in the time domain.
(b) DTFT in the frequency domain.
4/13/2015
KyungHee University
29
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
2M
X (e )   e
j
 j ( m  M )
e
jm
m0
2M
e
m 9
 jm 1  e  j( 2 M 1)
,
e

1  e  j

2M  1,

j
X (e )  e
jM
 jm
  0,  2 ,  4 ,
  0,  2 ,  4 ,
e  j( 2 M 1) / 2 (e j( 2 M 1) / 2  e  j( 2 M 1) / 2 )
e  j / 2 (e j / 2  e  j / 2) )
e j( 2 M 1) / 2  e  j( 2 M 1) / 2

e j / 2  e  j / 2
X (e j ) 
sin((2M  1) / 2)
sin( / 2)
sin((2M  1) / 2)
 2M  1
0,  2 ,  4 , ,
sin( / 2)
lim
X (e j ) 
4/13/2015
sin((2M  1) / 2)
sin( / 2)
KyungHee University
30
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.19 Inverse DTFT of a Rectangular Spectrum
Find the inverse DTFT of
Solution :
x[n] 
(sinc)  (square)
1
2
W

e jn d 
W
1
W
sin(Wn) 
n 0 n

x[0]  lim

1,   W
X (e j )  

0, W    
1 jn W
1
e
 sin(Wn ),
 W n
2nj
x[n] 
1
sin(Wn)
n
x[n] 
n0
W

si nc (Wn /  )
Figure 3.31 (a) Rectangular pulse in the frequency domain.
(b) Inverse DTFT in the time domain.
4/13/2015
KyungHee University
31
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.20 DTFT of the Unit Impulse
Find the DTFT of x[n]   [n]
Solution : (impulse) - (DC)
j
X (e ) 

 [n]e
 jn
1
n
DTFT
 [n] 
1
Example 3.21 Find the inverse DTFT of a Unit Impulse Spectrum.
Solution : (impulse train)  (impulse train)
1
x[n] 
2

   ()e

jn
d
j
X (e ) 

 (  k 2 )
k  
1
DTFT

  (),
2
4/13/2015
KyungHee University
    
32
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.22 Two different moving-average systems
y1 [n] 
1
( x[n]  x[n  1])
2
y 2 [ n] 
1
( x[n]  x[n  1])
2
h1 [n] 
1
1
 [n]   [n  1]
2
2
h2 [n] 
1
1
 [n]   [n  1]
2
2
solution :
Figure 3.36
H 1 ( e j ) 
e
j

2
e
j

2
e
2
4/13/2015
1 1  j
 e
2 2
j

2
e
j

2
H 2 ( e j ) 

j

e
cos( ) e 2
2
j

2

H 1 (e j )  cos( )
2
1 1  j
 e
2 2
e
2
j

2
 je
j

2

sin( )
2
arg{ H 1 (e j )}  
KyungHee University

2

H 2 (e j )  sin( )
2


 /2 ,


2
arg{H 2 (e j )}  

   / 2,

 2
0
0
33
3.6 Discrete-Time Non-periodic Signals : The
Discrete-Time Fourier Transform cont’
Example 3.23 Multipath Channel : Frequency Response y[n]  x[n]  ax[n  1]
Solution :
H (e j )  1  ae j  1  a e j (arg{a})  1  a cos(  arg{a})  j a sin(  arg{a})
H (e j )  ((1  a cos(   arg{ a})) 2  a sin 2 (  arg{ a})) 1/ 2  (1  a  2 a cos(   arg{ a})) 1/ 2
2
2
H inv (e j ) 
H inv (e j ) 
1
,
1  ae  j
1
1 a e
H inv (e j ) 
 j ( arg{a})

a 1
1
1  a cos(  arg{})  j a sin(  arg{})
1
(1  a  2 a cos(  arg{a}))1 / 2
2

1
H (e j )
| H (e j ) | (a) a = 0.5ej2/3. (b) a = 0.9ej2/3.
| H inv (e j ) | (a) a = 0.5ej2/3. (b) a = 0.9ej2/3.
4/13/2015
KyungHee University
34
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform
(continuous aperiodic)  (continuous aperiodic)
Inverse CTFT
CTFT
x(t ) 
1
2



(3.35)
X ( jw)e jwt dw

X ( jw)   x(t )e  jwt dt
(3.26)

x(t )  X ( jw)
CTFT
Condition for existence of Fourier transform:



4/13/2015
x(t ) dt  
2
KyungHee University
35
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Example 3.24 FT of a Real Decaying Exponential
 at
Find the FT of x(t )  e u(t )

Solution : 0 eat dt  , a  0 Therefore, FT not exists.
a  0,


X ( jw)   e  at u (t )e  jwt dt   e  ( a  jw) t dt


1
e  ( a  jw) t
a  jw
0


0
1
a  jw
x(t )  e  at u(t )
X ( jw) 
1
a 2  w2
arg{X ( jw)}   arctan(w / a)
LPF or HPF? Cut-off from 3dB point?
4/13/2015
KyungHee University
36
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Example 3.25 FT of a Rectangular Pulse
1,
x(t )  
0,
 T0  t  T0
Find the FT of x(t).
t  T0
Solution : (square)  (sinc)

X ( jw)   x(t )e
 jwt

For w  0,
T0
dt   e
T0
T0
 jwt
1  jwt
2
dt  
e
 sin(wT0 ),
jw
w
T0
w0
2
sin( wT0 )  2T0
w 0 w
lim
X ( jw) 
2
sin( wT0 ) X ( jw)  2T0 s inc (wT0 /  )
w
X ( jw)  2
Example 3.25. (a) Rectangular pulse. (b) FT.
4/13/2015
sin(wT0 )
w
0, sin(wT0 ) / w  0
arg{X ( jw)}  
 , sin(wT0 ) / w  0
KyungHee University
37
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Example 3.26 Inverse FT of an Ideal Low Pass Filter!!
Fine the inverse FT of the rectangular spectrum depicted in Fig.3.42(a) and given by
1,
X ( jw)  
0,
W  w  W
w W
Solution : (sinc) -- (square)
1
x(t ) 
2
1 jwt
e
dw

e
W
2 jt
W
W

jwt
W
1
sin(Wt ),
t
t0
1
sin(Wt )  W /  ,
t  0 t
1
W
Wt
x(t )  sin(Wt )
or x(t )  si nc( )
t


when
4/13/2015
t  0, lim
KyungHee University
38
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Example 3.27 FT of the Unit Impulse x(t )   (t )
Solution : (impulse) - (DC)

X ( jw)    (t )e  jwt dt  1 

FT
 (t ) 
1
Example 3.28 Inverse FT of an Impulse Spectrum
Find the inverse FT of X ( jw)  2 (w)
Solution : (DC)  (impulse)
1
x(t ) 
2



2 ( w)e jwt dw  1
FT
1
2 (w)
4/13/2015
KyungHee University
39
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Example 3.29 Digital Communication Signals
 Ar ,
Rectangular (wideband) xr (t )  
0,
t  T0 / 2
t  T0 / 2
Separation between KBS and SBS.
Narrow band

( Ac / 2)(1  cos(2t /T 0)),
xc (t )  
0,


t  T0 / 2
t  T0 / 2
Figure 3.44 Pulse shapes used in BPSK communications. (a) Rectangular pulse.
4/13/2015
KyungHee University
(b) Raised cosine pulse.
40
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
Solution : Pr 
Pc 
1
T0

Ac2

4T0
Figure 3.45 BPSK (a) rectangular pulse shapes
(b) raised-cosine pulse shapes.
T0 / 2
3 Ac2

8
T0 / 2
T0 / 2

T0 / 2
Ar2 dt  Ar2
( Ac2 / 4)(1  cos(2t / T0 ))2 dt
T0 / 2

1
T0
T0 / 2
[1  2 cos(2t / T0  1 / 2  1 / 2 cos(4t / T0 )]dt

8
Ar  Ac
3
the same power constraints
sin(wT0 / 2 )
sin(fT0 )
1 8 T0 / 2
X r' ( jf ) 
X c ( jw) 
(1  cos(2t / T0 ))e  jwt dt

w
f
2 3 T0 / 2
2 T0 / 2  jwt
1 2 T0 / 2  j ( w2 / T0 )t
1 2 T0 / 2  j ( w 2 / T0 )t
X c ( jw) 
e
dt

e
dt

e
dt
3 T0 / 2
2 3 T0 / 2
2 3 T0 / 2
T /2
sin(T0 / 2)
 jt
e
dt

2
T / 2

X r ( jw)  2
0
0
X c ( jw)  2
X c' ( jf ) 
4/13/2015
2 sin(wT0 / 2)
2 sin((w  2T0 )T0 / 2)
2 sin((w  2 / T0 )T0 / 2)


3
w
3
w  2 / T0
3
w  2 / T0
2 sin(fT0 )
2 sin( ( f  1 / T0 )T0 )
2 sin( ( f  1 / T0 )T0 )
 0.5
 0.5
3
t
3
 ( f  1 / T0 )
3
 ( f  1 / T0 )
KyungHee University
41
3.7 Continuous-Time Non-periodic
Signals : The Fourier Transform cont’
rectangular pulse.
One sinc
Raised cosine pulse
3 sinc’s
The narrower main lobe, the narrower bandwidth.
But, the more error rate as shown in the time domain
Figure 3.47 sum of three frequency-shifted sinc functions.
4/13/2015
KyungHee University
42
Fourier transform
Time domain
Periodic discrete
2
2
0 
0 
T
N
Periodic continuous
x(t ) 


X [k ]e jk0t
frequency domain
X [k ] 
k 
1
x[n] 
X (e j )e jn d 
a-periodic discrete

2  2 
1 
X ( j )e jt d 
a-Periodic continuous x(t ) 

2 
4/13/2015
KyungHee University
j
1
T

X (e ) 
T 
x(t )e  jk0t dt

 x[n]e
 jn
n 

X ( j )   x(t )e jt dt

43
9.1 Linearity and Symmetry Properties
of FT
z (t )  ax(t )  by(t ) FT
 Z ( jw)  aX ( jw)  bY ( jw)
; w0
z (t )  ax(t )  by(t ) FS
 Z [k ]  aX[k ]  bY[k ]
z[n]  ax[n]  by[n] DTFT
 Z (e j )  aX (e j )  bY (e j )
DTFS ; 0
z[n]  ax[n]  by[n] 
 Z [k ]  aX[k ]  bY[k ]
z (t ) 
2
1
x(t )  y (t )
3
2
x(t )
y(t )
FS ; 2
x(t ) 
 X [k ]  (1 /(k )) sin(k / 4)
FS ; 2
y(t ) 
 Y [k ]  (1 /(k )) sin(k / 2)
3
1
FS ; 2
z (t ) 
 Z [k ] 
sin(k / 4) 
sin(k / 2)
2k
2k
4/13/2015
KyungHee University
44
9.1 Linearity and Symmetry Properties
of FT cont’
• 3.9.1 Symmetry Properties : Real and Imaginary
Signals


X ( jw)   x(t )e  jwt dt 
 







(3.37)
x  (t )e jwt dt
(real x(t)=x*(t))  (conjugate symmetric)

X  ( jw)   x(t )e  j (  w)t dt

4/13/2015
X  ( jw)  X ( jw)
KyungHee University
(3.38)
45
9.1 Linearity and Symmetry Properties
of FT cont’
• 3.9.2 SYSMMEYRY PROPERTIES : EVEN/ODD
SIGNALS
(even)  (real)
(odd)  (pure imaginary)
xe (t )  Re{X ( j )}
xo (t )  j Im{X ( j )}
For even x(t),
4/13/2015
X
*

 jw   x t e
 jwt 

dt   x e jw d  X  jw.
KyungHee University

real
46
3.10 Convolution Property
• 3.10.1 CONVOLUTION OF NON-PERIODIC
SIGNALS
(convolution)  (multiplication)

yt   ht * xt    h xt   d

But
xt    
1
2

 1
yt    h 

 2



X  jwe jwt  dw.
given xt  
1
2



X  jwe jwt dw.

X  jwe jwt e jw dw d




change the order of integration

1
2
  h e jw d  X  jwe jwt dw.
 



jwt
 yt   2  H  jwX  jwe dw,
1
FT
yt   ht * xt 
Y  jw  X  jwH  jw.
4/13/2015
3.40
KyungHee University
47
3.10 Convolution Property cont’
Example 3.31 Convolution problem in the frequency domain
xt   1 t sint  be the input to a system with impulse response ht   1 t sin2t .
Find the output yt   xt  * ht .
Solution:

1, w  
FT
xt 
X  jw  

0, w  
1, w  2
FT
ht 
H  jw  
.
0, w  2
FT
yt   xt  * ht 
Y  jw  X  jwH  jw,

1, w  
Y  jw  
,
0
,
w




4/13/2015

yt   1 t sint .
KyungHee University
48
3.10 Convolution Property cont’
Example 3.32 Find inverse FT’S by the convolution property
Use the convolution property to find xt  , where
4
xt  X  jw  2 sin 2 w.
w
FT
2
Z  jw  sin w.
w

1, t  1 FT
z t   

 Z  jw,
0, t  1
Ex 3.32 (p. 261). (a) Rectangular z(t). (b) z (t ) * z (t )  xt 
4/13/2015
KyungHee University
49
3.10 Convolution Property cont’
• 3.10.2 FILTERING
Continuous time
Discrete time
LPF
HPF
BPF
Figure 3.53
(p. 263)
Frequency dependent gain (power spectrum) 20 log H  jw or 20 log H e j .
Y  jw  H  jw X  jw ,
2
4/13/2015
2
2
kill or not (magnitude)
KyungHee University
50
3.10 Convolution Property cont’
Example 3.34 Identifying h(t) from x(t) and y(t)
t
The output of an LTI system in response to an input xt   e2tut  is yt   e ut  .
Find frequency response and the impulse response of this system.
Solution:
X  jw 
H  jw 
4/13/2015
1
jw  2
Y  jw 
1
.
jw  1
jw  2  jw  1 
1
1
 
 
 1
.
jw  1  jw  1  jw  1
jw  1
Y  jw
But H  jw  X  jw
 ht    t   e t ut .
KyungHee University
51
3.10 Convolution Property cont’
EXAMPLE 3.35 Equalization of multipath channel
X  jw  H inv  jwY  jw or X e j   H inv e j Y e j ,
Consider again the problem addressed in Example 2.13. In this problem, a distorted
received signal y[n] is expressed in terms of a transmitted signal x[n] as
yn  xn axn 1,
a  1.
hinv n* hn   n.
Then H inv e j  


1,

hn  a,
0,

n0
n 1
.
otherwise
   
H inv e j H e j  1,
1
.
H e j
 
 
DTFT
hn
 H e j  1  ae j .

 
H inv e j 
1
.
1  ae  j
hinv n   a un.
n
4/13/2015
KyungHee University
52
3.10 Convolution Property cont’
• 3.10.3 Convolution of periodic signals : Cyclic
convolution
Convolution in just one period Or better to derive in the frequency domain
yt   xt   zt    x zt   d
T
0 2
FS ;
T
yt   xt   zt Y k   T X k Z k .
3.44
EXAMPLE 3.36 Convolution of 2 periodic signals
Evaluate the periodic convolution of the sinusoidal signal
zt   2 cos2t   sin4t 


1,
1 2 j ,

Z k   
 1 2 j ,
0,
X k  
k  1
k 2
.
k  2
otherwize
2 sin k 2 
.
k 2
Figure 3.56 (p. 268) Square wave for Example 3.36.
4/13/2015
KyungHee University
53
3.10 Convolution Property cont’
1  ,
Y k   X k Z k   
0,
k  1
, 
otherwise
yt   2  cos2t .
Xˆ j k   X k Z k ,
1,  J  k  J
0, otherwise



Z k 
N 1

z t  
sin t 2 J  1
. 3.45
sin t 
2
N
yn  xn  zn   xk zn  k  Y k   N X k Z k 
DTFS ;
k 0
Figure 3.57
4/13/2015
(p. 270) z(t) in Eq. (3.45) when J = 10.
KyungHee University
54
3.11 Differentiation and Integration Properties
• 3.11.1 DIFFERENTIATION IN TIME
1
xt  
2



X  jwe jwt dw.
d
1
xt  
dt
2



FT
X  jw jwe jwt dw 
jwX  jw.
EXAMPLE 3.37 The differentiation property implies that


d  at
jw
FT
e u t  
.
dt
a  jw


d at
e u t   ae at u t   e at  t   ae at u t     .
dt
d  at
a
jw
FT
e ut  
1 
dt
a  jw
a  jw

4/13/2015

KyungHee University
55
3.11 Differentiation and Integration
Properties cont’
Example 3.38 Resonance in MEMS accelerometer
The MEMS accelerometer introduced in Section 1.10 is described by the
differential equation
d2
w d
yt   n
yt   wn2 yt   xt .
2
dt
Q dt

H  jw 
1
.
wn
2
2
 jw   jw  wn
Q
Fig 3.58
(p. 273) 20log10 | H  jw |
n = 10,000 rad/s
Q = 2/5, Q = 1, and Q = 200.
Resonance in 10,000 rad/s
4/13/2015
KyungHee University
56
3.11 Differentiation and Integration
Properties cont’
Example 3.39 Use the differentiation property to find the FS of the triangular
wave depicted in Fig. 3.59(a)
0,

FS ;w0
z t   Z k    4 sin  k
 2


k
k 0


,
.

Y [k ]  ???
k0
Signals for (a) Triangular wave y(t). (b)
T 2 ,


k
FS ; w0
y t Y k    2T sin 
 2

2 2

 jk 
dy (t )
 z (t )
dt
k 0

.

, k  0
where
j 
2k
j,
T
If we differentiate z(t) once more???
4/13/2015
KyungHee University
57
3.11 Differentiation and Integration
Properties cont’
• 3.11.2 DIFFERENTIATION IN FREQUENCY

X  jw   xt e

 jwt
dt, Differentiate w.r.t. ω,

d
X  jw    jtxt e  jwt dt ,

dw
d
FT
Then,  jtxt 
X  jw.
dw
Example 3.40 FT of a Gaussian pulse
Use the differentiation-in-time and differentiation-in-frequency properties for the
FT of the Gaussian pulse, defined by gt   1 2 et 2 and depicted in Fig. 3.60.


d
g t    t
dt
2 e
t 2 2

2
 tg t .
3.48
d
FT
g t   tg (t ) 
 jwG  jw,
dt
1 d
FT
G jw
  tg t 
j dw
FT
and  jtg t 
 dw G  jw   wG  jw.
d
Then G jw  ce w 2 . (But, c=?) G j 0   1

2
Figure 3.60 (p. 275) Gaussian pulse g(t).
4/13/2015
1

2 et
2
2
d
G  jw
dw

2 e t 2 dt  1.
2
FT

e w 2 .
KyungHee University
2
58
3.11 Differentiation and Integration
Properties cont’
• 3.11.3 Integration
yt    x d ;
t


t

FT
x d 

Y  jw 
1
X  jw.
jw
3.52
1
X  jw  X  j 0 w.
jw
3.53
FT
Ex) ut      d . Prove ut U  jw  jw   w.
1
t
u t  
1 1
 sgn t .
2 2
 1,

sgn t   0,
1,

3.54 
Note u(t )  e at u(t ) where a=0
t0
FT
2 w.
We know 1
t  0.
t0
d
sgn t   2 t .  jwSgn jw  2.
dt
Fig. a step fn. as the sum of a constant and a signum fn.
4/13/2015
KyungHee University
 2
 , 0
S ( j )   j
since linear
0,
0

FT
 u t 
1
   
j
59
3.11 Differentiation and Integration
Properties cont’
Common Differentiation and Integration Properties.
d
FT
xt  
jX  j 
dt
d
FS ;0
xt  
 jk0 X k 
dt
d
FT
 jtxt  
X  j 
d
d
DTFT
 jnxn

X e j
d
t
1
FT
 x d  j X  j   X  j 0  
 
4/13/2015
KyungHee University
60
3.12 Time-and Frequency-Shift
Properties
• 3.12.1 Time-Shift Property


 jt
Z  j    zt e
  xt  t0 e  jt dt



  x e

 j  t0 
d  e
 jt0



x e  j d  e  jt0 X  j 
arg[e j t0 X  j ]   t0  arg[X ( j)]
Table 3.7 Time-Shift Properties of Fourier Representations
FT
xt  t0 
e  jt0 X  j 
FS ;0
xt  t0 
 e  jk0t0 X k 
 
DTFT
xn  n0 
 e  jn0 X e j
DTFS ;0
xn  n0 
 e  jk0n0 X k 
4/13/2015
KyungHee University
61
3.12 Time-and Frequency-Shift
Properties cont’
Example)
Figure 3.62
X  j  
4/13/2015
2

z t   xt  T1   Z  j   e jT X  j 
1
sin T0   Z  j   e jT
1
KyungHee University
2

sin T 
62
3.12 Time-and Frequency-Shift
Properties cont’
• 3.12.2 Frequency-Shift Property
1 
j t


z t  
Z
j

e
d



2
1 

X  j    e jt d

2 
Recall
z t  
1
2
 e jt



X  j e j   t d
1
2



X  j e jt d  e jt xt 
FT
xt  t0 
e jt0 X  j 
Table 3.8 Frequency-Shift Properties
FT
e jt xt  
X  j    
FS ;0
e jk00t xt 
 X k  k0 

DTFT
e jn xn
 x e j  

DTFS ;0
e jk00n xn
 X k  k0 
4/13/2015
KyungHee University
63
3.12 Time-and Frequency-Shift
Properties cont’
Example 3.42 FT by Using the Frequency-Shift Property
e j10t , t  
z t   
t 
0,
Solution: We may express zt  as the product of a complex sinusoid e j10t
and a rectangular pulse

1, t  
xt   

0, t  
FT
xt 
X  j  
2

zt   e j10t x(t )

sin  
FT
X  j   10  
 z t   e j10t x(t ) 
4/13/2015
2
sin   10  
  10
KyungHee University
64
3.12 Time-and Frequency-Shift
Properties cont’
Example 3.43 Using Multiple Properties to Find an FT
xt  



d 3t
e u t   e t u t  2
dt
Sol) Let wt   e3t ut  and vt   et ut  2
Then we may write xt  
d
wt   vt 
dt
By the convolution and differentiation properties X  j   jW  j V  j 
The transform pair
FT
e at u t 
 vt   e e
1
a  j
 W  j  
1
3  j
e j 2
ut  2  V  j   e
1  j
2 t 2 
2
je j 2
X  j   e
1  j 3  j 
2
4/13/2015
KyungHee University
65
3.13 Inverse FT by Using PartialFraction Expansions
• 3.13.1 Inverse FT by using
FT
e at u t  
1
a  j
bM  j     b1  j   b0
B j 
X  j  

 j N  aN 1  j N 1    a1  j   a0 A j 
~
M N
B  j 
k
X  j    f k  j  
A j 
k 0
M
Let v  j, then v N  aN 1v N 1   a1v  a0  0
 N roots, d k
M
X  j  
for k  1,, N
 b  j 
k 0
N
k
N
k
  j  d 
 partial fraction  X  j   
k 1
k
Cx
j  d k
k 1
FT
e dt u t 
1
j  d
for d  0
N
N
xt    Ck e ut  X  j   
dk t
k 1
4/13/2015
FT
k 1
Ck
j  d k
KyungHee University
66
3.13 Inverse FT by Using PartialFraction Expansions cont’
• 3.13.2 Inverse Discrete-Time Fourier Transform
 M e jM    1e j  0
X e  
 N e jN   N 1e j( N 1)    1e j  1
j
Ne
 jN
  N 1e
 j  N 1
   1e
 j
N

 1   1  d k e  j

k 1
v N  1v N 1  2v N 2    N 1v   N  0
    1  dC e
X e
j
N
k
k 1
 j
where
k
N
DTFT
d k n un

1
1  d k e  j
Then xn   Ck d k  un
n
k 1
4/13/2015
KyungHee University
67
3.13 Inverse FT by Using PartialFraction Expansions cont’
Example 3.45 Inversion by Partial-Fraction Expansion
 
X e j
5
 e  j  5
6

1
1
1  e  j  e  j 2 
6
6
Solution:
5
 e  j  5
C1
C2
6


1
1
1
1
1  e  j   e  j 2  1  e  j  1  e  j
6
6
2
3
Using the method of residues described in Appendix B, We obtain
And
5
 e  j  5
 1

6
C1  1  e  j 
 2
 1  1 e  j  1 e  j 2
6
6
5
 e  j  5
 1

6
C2  1  e j 
1
 3
 1  e j  1 e  j 2
6
6
5
 e  j  5
 6
4
1  j
1 e
3
e j 2
e j 2
5
 e j  5
 6
1
1  j
1 e
 j
3
e 3
e j 3
Hence, xn  41/ 2 un  1/ 3 un
n
4/13/2015
n
KyungHee University
68
3.14 Multiplication (modulation) Property
Given xt  
1
2
yt   x(t ) z (t ) 



X  jv e jvt dv

1
2   
2

 
and z t  
1
2



Z  j e jt d
X  jv Z  j e j   v t ddv
Change of variable     to obtain
yt  
1
2
 1
  2





X  jv Z  j   v dve jt d

FT
y t   xt z t  
Y  j  
1
X  j    Z  j 
2
(3.56)

Where X  j  Z  j    X  jv Z  j   v dv

 
DTFT
yn  xnzn
 Y e j 

 
 
1
X e j  Z e j
2
(3.57)
denotes periodic convolution.
Here, X e j  and Z e j  are 2 -periodic.
 
 

 

X e j  Z e j   X e j Z e j   d
4/13/2015

KyungHee University
69
3.14 Multiplication (modulation)
Property cont’
Example) Windowing in the time domain
FT
y t   x(t ) w(t ) 
Y  j  
W  j  
4/13/2015
2

1
X  j   W  j 
2
sin T0 
Figure 3.66 The effect of Truncating the
impulse response of a discrete-time system. (a)
Frequency response of ideal system. (b) F  
for  near zero. (c) F   for  slightly
greater than  / 2 (d) Frequency response of
system with truncated impulse response.
KyungHee University
70
3.14 Multiplication (modulation)
Property cont’
Example 3.46 Truncating the sinc function
Sol) hn 

1, n  M
1
 n 
sin  truncated by wn  
n  2 
0, otherwise
hn, n  M
ht n  
otherwise
0,
H t e j 
hn 
1
2


  H e W e

j  
j

d
1,    / 2
1
 n 
sin   H e j   
n  2 

0,  / 2    


W e j   
 
H t e j 
sin    2M  1 / 2
sin     / 2
1
2
 /2

 /2
  
F    H e W e
j
4/13/2015
DTFT
ht n
 Ht e j 
F  d
j  



j  

,
W e

0,


  /2
  /2
KyungHee University
71
3.14 Multiplication (modulation)
Property cont’
Example 3.47 Radar Range Measurement: RF Pulse Train
k  500
12 j ,

Solution) sin(2  500t )  S k    12 j , k  500

Pk   e  jkT00
X k  
sin k0T0 
k


0,
otherwise
x(t )  p(t ) sin(2  500t )  X [k ]  P[k ] * S[k ]
1  j k 500 T00 sin k  5000T0  1  j k 500 T00 sin k  5000T0 
e
 e
k  500
k  500
2j
2j
DTFT ; 2 / N
yn  xnzn

Y k   X k  Z k 
(3.59)
N 1
X k   Z k    X mZ k  m
m0
4/13/2015
KyungHee University
72
3.14 Multiplication (modulation)
Property cont’
Figure 3.69 FS magnitude spectrum of FR
pulse train for 0  k  1000 The result is
depicted as a continuous curve, due to
the difficulty of displaying 1000 steps
Table 3.9 Multiplication Properties
FT
xt z t 
1
X  j   Z  j  
2
FS ;0
xt z t 
 X k  Z k 
1
DTFT
xnzn

X e j  Z e j
2
DTFS ;0
xnzn
 X k   Z k 
 
4/13/2015
KyungHee University
 
73
3.15 Scaling Properties

Z  j    zt e
 jt


  xate  jt dt

1 / a   x e j  / a  d , a  0


Z  j   

1 / a  x e j  / a  d , a  0



 Z  j   1 / a
 x e


 j  / a 
d
FT
1/ a X  j / a
zt   xat
4/13/2015
(3.60)
KyungHee University
74
3.15 Scaling Properties cont’
Example 3.48 SCALING A RECTANGULAR PULSE
Let the rectangular pulse
 1, t  1 

x(t )  

0
,
t

1



t  1, t  2 

y (t )  x( )  
2  0, t  2 
Solution :
X ( jw) 
2
sin( w).  y(t )  x(t / 2). a  1 / 2
w
Y ( jw)  2 X (i 2w)
2
 2( ) sin(2w)
2w
2
 sin(2w).
w
4/13/2015
KyungHee University
75
3.15 Scaling Properties cont’
d
e j 2w
Example 3.49 Multiple FT Properties for x(t) when X ( jw)  j {
}.
dw 1  j (w / 3)
Solution)
s(t )  e t u (t ) 
S ( jw) 
FT
X ( jw)  j
1
1  jw
d
{e j 2 w S ( jw / 3)}.
dw
we define Y ( jw)  S ( jw / 3)
y(t )  3s(3t )  3e3t u(3t )  3e 3t u(t ).
Now we define W ( jw)  e j 2wY ( jw)
w(t )  y(t  2)  3e3(t  2)u(t  2).
Finally, since
X ( jw)  j
d
W ( jw),.
dw
x(t )  tw(t )  3te 3(t  2)u(t  2).
4/13/2015
KyungHee University
76
3.16 Parseval’s Relationships
언제 꽝? | X ( jw) |2
| x(t ) |2
Wx  


Table 3.10 Parseval Relationships for the Four
Fourier Representations
Represent
ation
| x(t ) |2 dt,
Note that | x(t ) |2  x(t ) x * (t ).
1
x (t ) 
2
*




Wx   x(t )[

X * ( jw)e  jwt dw.
1
2



X * ( jw)e  jwt dw]dt.
1  *
Wx 
X ( jw) X ( jw) dw
2 
So concludethat

1 
2
2
|
x
(
t
)
|
dt

|
X
(
jw
)
|
dw.

2 
4/13/2015
바이올린 주자가쓴 에너지?
Parseval Relation

1
| X ( jw) | dw 
2

FS

1 T
2
2
|
x
(
t
)
|
dt

|
X
[
k
]
|

T O
K  


DTFT
DTFS
KyungHee University
 | x[n] |2 
n  
1
N
N 1
1
2





FT
2
| X (e j ) | 2 d
N 1
 | x[n] |  | X [k ] |
2
K 0

| X ( jw) | 2 dw
2
k 0
77
3.16 Parseval’s Relationships cont’
Example 3.50 Calculate the energy in a signal
sin(Wn)
Let x[n] 
n

E∞=
| x[n]|
2
n  

sin 2 (Wn )

.
2 2
 n
n  
Use the Parseval’s theorem
Solution) E 
1
2
1
E 
2


W

| X (e j ) |2 d.
1d  W /  .
W
1,
|  | W
x[n]  X (e ) {
0, W |  | 
DTFT
4/13/2015
j
KyungHee University
78
3.17 Time –Bandwidth Product
1, | t | To FT
x(t )  {
 X ( jw)  2 sin(wTo ) / w.
0, | t | To
Figure 3.72 (p. 305) Rectangular pulse illustrating the inverse
relationship between the time and frequency extent of a signal.
Td

[

t 2 | x(t ) |2 dt




2
| x(t ) | dt
]1/ 2
Bw

[

w2 | X ( jw) |2 dw 1 / 2

] .

2
 | X ( jw) | dw

Td Bw  1 / 2.
4/13/2015
KyungHee University
79
3.17 Time –Bandwidth Product cont’
Example 3.51 Bounding the Bandwidth of a Rectangular Pulse
1, | t |  T 
Let x(t )  

0
,
|
t
|

T
o 

Use the uncertainty principle to place a lower bound on the effective bandwidth of x(t).
Solution:
 To t 2 dt 
T
Td   Too 
 Todt 
1/ 2

 (1/(2To ))(1/ 3)t 3 |To To

1/ 2
 To / 3.
Bw  3 /(2To ).
4/13/2015
KyungHee University
80
3.18.1 The Duality Property of the FT
1
x(t ) 
2



X ( jw)e
jwt

dw. 
 X ( jw)   x(t )e  jwt dt .

Fig. 3.73 Duality of
rectangular pulses and sinc
functions
1 
z ( )e jv dv.

2  
if we choose v  t and   w, then Eq. (3.66) im plies that
1 
y (t ) 
z ( w)e jwt dw.

2  
FT
y (t ) 
z ( w).
y (v ) 
1 
z (t )e  jwt dt,

2  
FT
z (t ) 
2y ( w),
y ( w) 
4/13/2015
FT
f (t ) 
F ( jw),
FT
F ( jt ) 
2f (  w).
KyungHee University
81
3.18.1 The Duality Property of the FT
cont’
Example 3.52 By using Duality, find the FT of x(t ) 
1
1  jt
Solution)
FT
FT
f (t ) 
F ( jw)  F ( jt ) 
2f (w).
FT
f (t )  et u (t ) 
F ( jw) 
4/13/2015
1
1  jw
 F ( jt ) 
1
1  jt
KyungHee University
82
3.18.2 & 3.18.3
• 3.18.2 The Duality Property of the DTFS
N 1
x[n]   X [k ]e
jk o n
K 0
1
X
[
k
]

. 
N
DTFS ; 2 / N
x[n] 

 X [k ]

N 1

x[n]e  jkon
n 0
DTFS ; 2 / N
X [k ] 


1
x[k ]
N
• 3.18.3 The Duality Property of the DTFT and FS
z (t ) 

Z [k ]e jkw0t  Z [k ]  1

2
k  


j
X (e ) 

  z (t )e

 jkt
dt
x[n]e  jn .
n  
Table 3.11 Duality Properties of Fourier Representations
FT
f (t ) 
F ( jw)
FT
DTFS
DTFS ; 2 / N
x[n] 

 X [k ]
DTFS
x[n] 
 X (e j )
DTFS
x[n] 
4/13/2015
1
2

  X (e

j
)e jn .
FT
F ( jt ) 
2f (w)
DTFS ; 2 / N
X [n] 

(1/ N ) x[k ]
FS ;1
X (e jt ) 
 x[k ]
DTFT
FS ;1
x[n] 
 X (e j )  X (e jt ) 
 x[k ].
KyungHee University
83
3.18.3 The Duality Property of the
DTFT and FS cont’
Example 3.53 FS-DTFT Duality
Use the duality property and the results of Example 3.39 to determine the inverse
DTFT of the triangular spectrum X (e j ) depicted in Fig 3.75(a).
Solution:
Z [k ]  e
4/13/2015
jw / 2
Y [k ]
, n0
 
 k 1
  4 j sin(k / 2) ,

k 2


n0 

KyungHee University
84